This study explores the impact of varying discharge gas compositions on the etching performance of silicon carbide (SiC) in a heptafluoroisopropyl methyl ether (HFE-347mmy)/O2/Ar plasma. SiC is increasingly favored for high-temperature and high-power applications due to its wide bandgap and high dielectric strength, but its chemical stability makes it challenging to etch. This research explores the use of HFE-347mmy as a low-global-warming-potential (GWP) alternative to the conventional high-GWP fluorinated gasses that are typically used in plasma etching. By examining the behavior of SiC etch rates and analyzing the formation of fluorocarbon films and Si-O bonds, this study provides insights into optimizing plasma conditions for effective SiC etching, while addressing environmental concerns associated with high-GWP gasses.
This article was supported by the Korea Evaluation Institute of Industrial Technology grant funded by the Korean Government Ministry of Trade, Industry, and Energy (grant Nos. 20017456, RS-2022-00155706, 00267003, and RS-2023-00266039).