In this study, kenaf, a fast-growing plant, was pyrolyzed to biochar, and the biochar was impregnated with aluminum to improve its fluoride adsorption capacity. The Al-impregnated kenaf biochar (Al-KNF-BC) was pyrolyzed at temperatures of 300–700 °C, where the specimen treated at 300 °C (Al-KNF-300) demonstrated the highest fluoride adsorption capacity. The kinetics and equilibrium adsorption of fluoride by Al-KNF-300 followed the pseudo-second-order and Langmuir models, respectively. According to the Langmuir model, the maximum fluoride adsorption capacity of Al-KNF-300 was 13.93 mg/g. The enthalpy and entropy of fluoride adsorption by Al-KNF-300 were 37.80 kJ/mol and 124.1 J/mol K, respectively. Fluoride adsorption by Al-KNF-300 was favorable at pH values as low as 3, and the effect of anion competition followed the order HCO3− > SO42− > NO3− > Cl−. A maximum adsorption efficiency of 99.23% was obtained at an adsorbent concentration of 16.67 g/L, at which point the fluoride concentration decreased from 100 to < 1.5 mg/L (the drinking water standard). Based on these results, Al-KNF-300 can be considered an effective and inexpensive adsorbent for removing fluoride from contaminated water to meet drinking water standards.
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Technological Institute of Mexico [Project: 5320u4; code 10511.21-P].