Ajou University repository

Large-Scale Assembly of Peptide-Based Hierarchical Nanostructures and Their Antiferroelectric Properties
  • Lee, Yonghun ;
  • Kim, Kyung Won ;
  • Duong, Nguyen Xuan ;
  • Park, Hyeok ;
  • Park, Jinhong ;
  • Ahn, Chang Won ;
  • Park, In Woo ;
  • Jang, Seok Cheon ;
  • Kim, Dong Hoe ;
  • Lee, Minbaek ;
  • Chung, Woo Jae ;
  • Kim, Tae Heon ;
  • Lee, Hyungwoo ;
  • Heo, Kwang
Citations

SCOPUS

5

Citation Export

Publication Year
2020-11-01
Publisher
Wiley-VCH Verlag
Citation
Small, Vol.16
Keyword
aldehyde detectionantiferroelectric devicesdiphenylalaninehierarchical nanostructuresself-assembled nanostructures
Mesh Keyword
Anti ferroelectricsAntiferroelectric propertiesBiomimetic assembliesControlled conditionsExternal electric fieldFerroelectric transitionHierarchical NanostructuresHigh crystallinityElectricityNanostructuresPeptidesSolvents
All Science Classification Codes (ASJC)
BiotechnologyChemistry (all)BiomaterialsMaterials Science (all)Engineering (miscellaneous)
Abstract
An effective strategy is developed to create peptide-based hierarchical nanostructures through the meniscus-driven self-assembly in a large area and fabricate antiferroelectric devices based on these nanostructures for the first time. The diphenylalanine hierarchical nanostructures (FF-HNs) are self-assembled by vertically pulling a substrate from a diphenylalanine (FF) solution dissolved in a miscible solvent under precisely controlled conditions. Owing to the unique structural properties of FF nanostructures, including high crystallinity and α-helix structures, FF-HNs possess a net electrical dipole moment, which can be switched in an external electric field. The mass production of antiferroelectric devices based on FF-HNs can be successfully achieved by means of this biomimetic assembly technique. The devices show an evident antiferroelectric to ferroelectric transition under dark conditions, while the ferroelectricity is found to be tunable by light. Notably, it is discovered that the modulation of antiferroelectric behaviors of FF-HNs under glutaraldehyde exposure is due to the FF molecules that are transformed into cyclophenylalanine by glutaraldehyde. This work provides a stepping stone toward the mass production of self-assembled hierarchical nanostructures based on biomolecules as well as the mass fabrication of electronic devices based on biomolecular nanostructures for practical applications.
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/31613
DOI
https://doi.org/10.1002/smll.202003986
Fulltext

Type
Article
Funding
Y.L. and K.W.K. contributed equally to this work. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF\u20102020R1A6A1A03043435 and NRF\u20102019R1F1A1063020). This research was also supported by the support from the MOTIE (Ministry of Trade, Industry and Energy; Project No. 10080633) and KSRC (Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device. D.H.K. acknowledges the support from the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451, the Competency Development Program for Industry Specialist). N.X.D., C.W.A., and T.H.K. acknowledge the support from the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF\u20102019R1A6A1A11053838). H.L. acknowledges the support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1068184).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

 Lee, Hyungwoo Image
Lee, Hyungwoo이형우
Department of Physics
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.