생체시계는 내부 행동, 생리학적, 대사 주기의 주기성을 유지하는 데 중요한 역할 을 하며, 유기체가 지구의 24시간 자전을 예측할 수 있도록 한다. 생체시계는 세포와 조직 에 특정한 방식으로 리듬 유전자 발현을 유도하는데, 이는 세포와 조직의 적절한 기능에 필수적이다. 신경계 내에서 가장 풍부한 세포인 astrocyte는 뇌 항상성을 유지하는 데 필수 적이다. 그러나 일주기 시계가 astrocyte의 생리를 조절하는 메커니즘은 여전히 잘 알려져 있지 않았지만, 최근 연구에서 astrocyte 내의 일주기 유전자로 찾아낸 Herpud1이 낮과 밤 에 차이를 보이면서 ER 칼슘의 방출과 CX43의 인산화를 조절한다는 내용을 보고했다 (Ryu et al., 2024). 이는 생체시계가 astrocyte 기능 조절하는 구체적인 메커니즘을 밝히는 중요한 근거로 작용한다. 본 학위 논문에서 Ryu et al., 2024의 mouse cortical primary astrocyte 배양의 412개의 일주기 전사체 데이터를 기반으로 38개의 유전자가 astrocyte가 풍부한 성인 발현 리듬 유전자임을 추가로 확인했다. 추가적으로, 선행 논문의 SCN single cell RNA sequencing 데이터와 비교하여 38개의 유전자 중에서 astrocyte 특이적으로 일 주기 리듬을 보이는 유전자를 선별했고, 강력한 일주기 리듬 유전자인 Transmembrane protein 44 (Tmem44)를 새로운 후보 유전자로 선별했다. _x000D_
<br>흥미롭게도, Tmem44의 knockdown (KD)은 BMAL1 단백질 양에는 영향을 주었지 만, Bmal1 RNA 양에는 영향을 미치지 않았다. 일관되게 BMAL1의 downstream gene인 Nr1d1 및 Per2의 발현도 감소했다. Tmem44 KD astrocyte에서 감소된 BMAL1 단백질 양 이 BMAL1 degradation rate가 높아 생긴 결과로 생각되며, Tmem44가 BMAL1 stability를 조절한다는 것을 보여준다. 이를 통해 Tmem44가 astrocyte 생체 시계에 영향을 주는 중요 한 유전자로 생각되고, BMAL1 stability를 조절하는 메커니즘을 추가적으로 조사하고 있다. _x000D_
<br>잘 연구되지 않은 Tmem44 의 기능 분석을 위해 먼저 TMEM44 가 ER 에 존재하는 membrane protein 인 것을 확인했다. 이 후에 Tmem44 KD astrocyte 에서의 RNA sequencing 을 통하여 94 개의 up regulated genes, 361 개의 down regulated genes 들이 확인되었고, 특히 46 개의 ER component genes 이 down regulation 되었음에 주목했다. 그 중 ER stress response 관련 유전자들이 높은 부분을 차지했고, Tmem44 의 기능이 ER stress response 와 관련이 있는지 확인했다. 결과적으로, ER stress 환경에서 Unfolded protein response (UPR) pathway 중 하나의 전사인자인 ATF-4 단백질 양이 Tmem44 에 의해 조절되었다. 이를 통해 Tmem44 가 UPR 신호와 관련된 astrocyte 생리학을 조절하는 중요한 유전자일 가능성을 시사한다.|Circadian clocks play a crucial role in maintaining the periodicity of internal behavioral, physiological, and metabolic cycles, enabling organisms to anticipate the Earth's 24-hour rotation. Circadian clock induces the rhythmic gene expression in a celland tissue- specific manner, which is essential for the proper functioning of the cells and tissues. Within the nervous system, astrocytes, the most abundant cells, are vital for maintaining its homeostasis. The mechanism by which the circadian clock regulates astrocyte physiology remain poorly understood, but a recent study reported that Herpud1, a circadian gene in astrocytes, regulates ER calcium release and CX43 phosphorylation with day and night differences (Ryu et al., 2024). This result supported important evidence that astrocyte function is regulated by the circadian clock._x000D_
<br>In this thesis, I additionally identified 38 adult mouse astrocyte enriched circadian genes using the 412 circadian transcriptomes from mouse cortical primary astrocyte cultures by Ryu et al., 2024. In addition, by comparing with other SCN single cell RNA sequencing data, I additionally investigated genes among 38 genes that showed astrocyte-specific circadian rhythm, and selected Transmembrane protein 44 (Tmem44), a strong circadian rhythm gene, as a new candidate gene. Intriguingly, Tmem44 knockdown (KD) affected BMAL1 protein levels but not Bmal1 RNA levels. Consistently, the expression of Nr1d1 and Per2, downstream target genes of BMAL1 was also decreased. Reduced BMAL1 protein levels in Tmem44 KD astrocytes are a result of the high BMAL1 degradation rate, suggesting that Tmem44 regulates BMAL1 stability. Based on this, Tmem44 is important oscillating gene affecting the astrocyte circadian clock, and the mechanism regulating BMAL1 stability is being further investigated._x000D_
<br>I confirmed that TMEM44 is a membrane protein in the ER. To analyze the function of Tmem44, we performed RNA sequencing in Tmem44 KD astrocyte and identified 94 up regulated genes and 361 down regulated genes. In particular, I focused on the downregulation of 46 ER component genes. Among them, ER stress response related genes accounted for a high proportion, and I investigated whether the function of Tmem44 is related to ER stress response. As a result, the protein level of ATF-4, a transcription factor of the Unfolded Protein Response (UPR) pathway, was regulated by Tmem44 in ER stress environment. This suggests that it may be an important gene regulating astrocyte physiology related to UPR signal.
Alternative Abstract
Circadian clocks play a crucial role in maintaining the periodicity of internal behavioral, physiological, and metabolic cycles, enabling organisms to anticipate the Earth's 24-hour rotation. Circadian clock induces the rhythmic gene expression in a celland tissue- specific manner, which is essential for the proper functioning of the cells and tissues. Within the nervous system, astrocytes, the most abundant cells, are vital for maintaining its homeostasis. The mechanism by which the circadian clock regulates astrocyte physiology remain poorly understood, but a recent study reported that Herpud1, a circadian gene in astrocytes, regulates ER calcium release and CX43 phosphorylation with day and night differences (Ryu et al., 2024). This result supported important evidence that astrocyte function is regulated by the circadian clock._x000D_
<br>In this thesis, I additionally identified 38 adult mouse astrocyte enriched circadian genes using the 412 circadian transcriptomes from mouse cortical primary astrocyte cultures by Ryu et al., 2024. In addition, by comparing with other SCN single cell RNA sequencing data, I additionally investigated genes among 38 genes that showed astrocyte-specific circadian rhythm, and selected Transmembrane protein 44 (Tmem44), a strong circadian rhythm gene, as a new candidate gene. Intriguingly, Tmem44 knockdown (KD) affected BMAL1 protein levels but not Bmal1 RNA levels. Consistently, the expression of Nr1d1 and Per2, downstream target genes of BMAL1 was also decreased. Reduced BMAL1 protein levels in Tmem44 KD astrocytes are a result of the high BMAL1 degradation rate, suggesting that Tmem44 regulates BMAL1 stability. Based on this, Tmem44 is important oscillating gene affecting the astrocyte circadian clock, and the mechanism regulating BMAL1 stability is being further investigated._x000D_
<br>I confirmed that TMEM44 is a membrane protein in the ER. To analyze the function of Tmem44, we performed RNA sequencing in Tmem44 KD astrocyte and identified 94 up regulated genes and 361 down regulated genes. In particular, I focused on the downregulation of 46 ER component genes. Among them, ER stress response related genes accounted for a high proportion, and I investigated whether the function of Tmem44 is related to ER stress response. As a result, the protein level of ATF-4, a transcription factor of the Unfolded Protein Response (UPR) pathway, was regulated by Tmem44 in ER stress environment. This suggests that it may be an important gene regulating astrocyte physiology related to UPR signal.