디지털 트윈은 현실 세계의 물리적인 사물을 컴퓨터상에 동일하게 가상화시키는 기술로써, IoT을 통해 센서 데이터를 수집하고, 수집한 데이터를 활용하여 물리적인 사물과 가상 사물을 양방향으로 연결을 할 수 있게 한다. 디지털 트윈 기술은 가상 모델의 시뮬레이션을 통해 동작을 조정하고 환경변화에 대한 대응을 미리 실험하여 위험성을 최소화할 수 있는 장점을 지닌다. 최근 인공지능이나 기계학습에 관련된 기술들이 주목받기 시작하면서, 물리적인 사물의 동작을 가상화하여 가상 모델을 관찰하고 다양한 시나리오를 적용하려는 시도가 증가하고 있다. 특히, 인더스트리 4.0에서 공장자동화의 핵심인 협력 로봇의 디지털 트윈을 구축하기 위해서는 로봇의 동작을 인지하는 과정이 필수적으로 요구된다. 로봇의 동작을 인지하기 위한 모델링 기반의 연구에 비해 센서 데이터 기반으로 동작을 예측하는 연구는 미비한 상황이다. 따라서 본 논문에서는 로봇의 동작을 인지하기 위해 가정용 협력 로봇에서 전류 및 관성 센서 데이터를 수집하기 위한 실험 환경을 구축하고, 수집한 센서 데이터를 기반으로 한 동작 예측 모델을 제안하고자 한다. 제안하는 방식은 조인트 위치 기반으로 로봇의 동작 명령어를 9가지로 분류하고 전류와 관성 센서값을 사용하여 학습을 통해 예측하는 방식이다. 이때, 학습에 사용되는 데이터는 협력 로봇이 동작 명령어의 입력 파라미터에 마진을 가지고 작동할 때 수집되는 센서값이다. 이를 통해, 동일한 경로를 따라 이동하는 9가지 동작뿐만 아니라 각 동작과 비슷한 경로를 따라 이동하는 동작에 대해서도 예측하는 모델을 구축하였다. SVM을 이용하여 학습한 결과, 모델의 성능은 평균적으로 정확도, 정밀도, 및 재현율이 모두 97%로 평가되었다.