캡슐 내시경은 식도부터 항문까지 소화기관 전체를 한 번에 촬영할 수 있는 의료기기로, 한 번의 검사에서 평균 8∼12시간의 길이와 5만장 이상의 프레임으로 구성된 영상을 생성한다. 그러나 생성된 영상에 대한 분석은 전문가에 의해 수작업으로 진행되고 있어서, 질병 영상 진단을 돕기 위한 영상 분석 자동화에 대한 수요가 증가하고 있다. 그 중에서도 본 연구에서는 위장관 내에서 발견될 수 있는 융기성 병변인 폴립 영상 자동 검출에 초점을 맞추었다. 본 연구에서는 멀티 스케일 분석을 통해 폴립 의심 영역을 추출하고, 이것을 원본 영상과 합성하여 폴립 학습을 강화시킬 수 있는 가중치 영상을 생성하는 기법을 제안한다. 수집한 452장의 데이터에 대해 머신 러닝 기법중 하나인 SVM과 RF로 실험한 결과, 원본 영상을 이용한 폴립 검출의 F1점수는 89.3%였지만, 생성된 가중치 영상을 통해 학습한 결과 F1점수가 93.1%로 향상된 것을 확인하였다.