Ajou University repository

k-부분보형 부등식과 불확실성을 고려한 이산최적화 문제
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.author정슬기-
dc.date.issued2022-05-
dc.identifier.issn1225-1119-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/37635-
dc.identifier.urihttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002847529-
dc.description.abstractWe define k-submodular inequalities using the definition of the k-submodular set function. These inequalities can be applied to discrete robust optimization problems with mutually exclusive constraints. We define k-submodular polyhedron associated with the k-submodular function. Also we propose a polynomial-time separation algorithm for the most violated k-submodular inequality. The computational results show the effectiveness of the proposed inequalities when solving a robust discrete optimization problem by the branch-and-cut method.-
dc.language.isoKor-
dc.publisher한국경영과학회-
dc.titlek-부분보형 부등식과 불확실성을 고려한 이산최적화 문제-
dc.title.alternativek-Submodular Inequalities and Robust Discrete Optimization-
dc.typeArticle-
dc.citation.endPage34-
dc.citation.number2-
dc.citation.startPage25-
dc.citation.title한국경영과학회지-
dc.citation.volume47-
dc.identifier.bibliographicCitation한국경영과학회지, Vol.47 No.2, pp.25-34-
dc.subject.keywordSubmodular Function-
dc.subject.keywordValid Inequalities-
dc.subject.keywordRobust Optimization-
dc.subject.keywordMutually Exclusivity-
dc.type.otherArticle-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Joung, Seulgi  Image
Joung, Seulgi 정슬기
Department of Industrial Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.