Ajou University repository

보행자 자세 정보를 활용한 딥러닝 기반 보행자 궤적 추적 프레임워크
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.author송원용-
dc.contributor.author이관우-
dc.contributor.author박상철-
dc.date.issued2020-09-
dc.identifier.issn2508-4003-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/37463-
dc.identifier.urihttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002620766-
dc.description.abstractThis paper presents a deep learning based (human) pedestrian position tracking methodology from a video. In a manufacturing shop floor, the moving trajectories of pedestrians can be utilized for various applications, such as layout optimization of facilities, and material flow analysis. <br>To improve the accuracy of the proposed human tracking method, we make use of the body posture information of workers. The body posture information is extracted by using the ‘Open- Pose’ library which represents the first real-time multi-person system to jointly detect human body, hand, facial, and foot key points on single images. The proposed methodology consists of four major steps; 1) Pedestrian recognition from a video, 2) Pedestrian tracking by using the posture information, 3) correction of potential tracking errors, and 4) finding the moving trajectories of pedestrians. The proposed methodology has been implemented and test with various examples.-
dc.language.isoKor-
dc.publisher한국CDE학회-
dc.title보행자 자세 정보를 활용한 딥러닝 기반 보행자 궤적 추적 프레임워크-
dc.title.alternativeDeep Learning based Pedestrian Tracking Framework using Body Posture Information-
dc.typeArticle-
dc.citation.endPage266-
dc.citation.number3-
dc.citation.startPage256-
dc.citation.title한국CDE학회 논문집-
dc.citation.volume25-
dc.identifier.bibliographicCitation한국CDE학회 논문집, Vol.25 No.3, pp.256-266-
dc.identifier.doi10.7315/CDE.2020.256-
dc.subject.keywordBody posture-
dc.subject.keywordDeep learning model-
dc.subject.keywordMoving trajectory-
dc.subject.keywordOpenPose-
dc.subject.keywordPedestrian tracking-
dc.subject.keywordTracking error-
dc.type.otherArticle-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Park, SangChul Image
Park, SangChul박상철
Department of Industrial Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.