| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | 송세리 | - |
| dc.contributor.author | 박상철 | - |
| dc.date.issued | 2019-09 | - |
| dc.identifier.issn | 2508-4003 | - |
| dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/37384 | - |
| dc.identifier.uri | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002493779 | - |
| dc.description.abstract | This paper proposes a machine learning based prediction model construction methodology for the virtual metrology in LCD manufacturing processes. The proposed prediction model construction methodology consists of four major steps; 1) data preprocessing, 2) feature selection, 3) deep learning model design, and 4) model validation. To extraction effective predictor variables at the feature selection stage, this paper employs three techniques including relative weight method, random forest method, and genetic algorithm. The constructed prediction model has been applied to LCD manufacturing data, and shows reasonably acceptable prediction accuracy which is higher than 90%. | - |
| dc.language.iso | Kor | - |
| dc.publisher | 한국CDE학회 | - |
| dc.title | LCD 검사 공정에서 가상 계측을 위한 머신 러닝 기반 예측 모델 | - |
| dc.title.alternative | Machine Learning Based Prediction Model for the Virtual Metrology of LCD Inspection Process | - |
| dc.type | Article | - |
| dc.citation.endPage | 338 | - |
| dc.citation.number | 3 | - |
| dc.citation.startPage | 329 | - |
| dc.citation.title | 한국CDE학회 논문집 | - |
| dc.citation.volume | 24 | - |
| dc.identifier.bibliographicCitation | 한국CDE학회 논문집, Vol.24 No.3, pp.329-338 | - |
| dc.identifier.doi | 10.7315/CDE.2019.329 | - |
| dc.subject.keyword | Virtual Metrology | - |
| dc.subject.keyword | LCD | - |
| dc.subject.keyword | Machine Learning | - |
| dc.subject.keyword | Prediction Model | - |
| dc.type.other | Article | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.