Ajou University repository

Unsupervised Contrastive Learning of Sentence Embeddings Through Optimized Sample Construction and Knowledge Distillation
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorDing, Yan-
dc.contributor.authorJin, Rize-
dc.contributor.authorPaik, Joon Young-
dc.contributor.authorChung, Tae Sun-
dc.date.issued2024-01-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/37111-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85177450839&origin=inward-
dc.description.abstractUnsupervised contrastive learning of sentence embedding has been a recent focus of researchers. However, issues such as unreasonable division of positive and negative samples and poor data enhancement leading to text semantic changes still exist. We propose an optimized data augmentation method that combines contrastive learning’s data augmentation with unsupervised sentence pair modelling’s distillation. Our data augmentation uses in-sentence tokens for positive examples and text similarity for negative examples, while the distillation is conducted without supervised pairs. Experimental results on the STS task show that our method achieves a Spearman correlation of 81.03%, outperforming existing STS benchmarks.-
dc.language.isoeng-
dc.publisherSpringer Science and Business Media Deutschland GmbH-
dc.subject.meshAugmentation methods-
dc.subject.meshContrastive learning-
dc.subject.meshData augmentation-
dc.subject.meshData enhancement-
dc.subject.meshEmbeddings-
dc.subject.meshNegative samples-
dc.subject.meshPositive examples-
dc.subject.meshSemantic similarity-
dc.subject.meshText similarity-
dc.subject.meshUnsupervised sentence embedding-
dc.titleUnsupervised Contrastive Learning of Sentence Embeddings Through Optimized Sample Construction and Knowledge Distillation-
dc.typeConference-
dc.citation.conferenceDate2023.11.15. ~ 2023.11.19.-
dc.citation.conferenceName20th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2023-
dc.citation.editionPRICAI 2023: Trends in Artificial Intelligence - 20th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2023, Proceedings-
dc.citation.endPage381-
dc.citation.startPage375-
dc.citation.titleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.citation.volume14326 LNAI-
dc.identifier.bibliographicCitationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.14326 LNAI, pp.375-381-
dc.identifier.doi10.1007/978-981-99-7022-3_35-
dc.identifier.scopusid2-s2.0-85177450839-
dc.identifier.urlhttps://www.springer.com/series/558-
dc.subject.keywordContrastive Learning-
dc.subject.keywordDistillation-
dc.subject.keywordSemantic Similarity-
dc.subject.keywordUnsupervised Sentence Embedding-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaTheoretical Computer Science-
dc.subject.subareaComputer Science (all)-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Chung, Tae-Sun Image
Chung, Tae-Sun정태선
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.