Ajou University repository

Analysis of the Relationship Between Regulation and R & D Efficiency Using Quantile Regression
Citations

SCOPUS

1

Citation Export

DC Field Value Language
dc.contributor.authorNam, Moonju-
dc.contributor.authorKo, Jindeuk-
dc.contributor.authorLee, Jooyeoun-
dc.date.issued2022-01-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36786-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127612811&origin=inward-
dc.description.abstractThis study measures the R & D efficiency of 33 OECD countries using data envelopment analysis (DEA), and analyzes the effect of regulation on such R & D efficiency through quantile regression (QR). Gross expenditure on R & D and the total number of researchers are selected as the input variables in the DEA, and the total number of papers and triadic patent families corresponding to representative outputs in the field of science and technology are selected as the output variables. Three reguation indexes are used for QR analysis. Results show that regulations have a positive effect on the R & D efficiency of countries in the bottom 10%, and a negative effect on that of countries in the top 10%. Such findings suggest the need to change the government's regulatory intensity relative to each country's R & D efficiency level to increase national-level R & D efficiency.-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshEfficiency levels-
dc.subject.meshInput variables-
dc.subject.meshNational level-
dc.subject.meshOECD countries-
dc.subject.meshOutput variables-
dc.subject.meshQuantile regression-
dc.subject.meshR & D efficiency-
dc.subject.meshRegulation-
dc.subject.meshScience and Technology-
dc.subject.meshTriadic patents-
dc.titleAnalysis of the Relationship Between Regulation and R & D Efficiency Using Quantile Regression-
dc.typeConference-
dc.citation.conferenceDate2022.1.17. ~ 2022.1.20.-
dc.citation.conferenceName2022 IEEE International Conference on Big Data and Smart Computing, BigComp 2022-
dc.citation.editionProceedings - 2022 IEEE International Conference on Big Data and Smart Computing, BigComp 2022-
dc.citation.endPage63-
dc.citation.startPage60-
dc.citation.titleProceedings - 2022 IEEE International Conference on Big Data and Smart Computing, BigComp 2022-
dc.identifier.bibliographicCitationProceedings - 2022 IEEE International Conference on Big Data and Smart Computing, BigComp 2022, pp.60-63-
dc.identifier.doi10.1109/bigcomp54360.2022.00022-
dc.identifier.scopusid2-s2.0-85127612811-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9736461-
dc.subject.keyworddata envelopment analysis-
dc.subject.keywordquantile regression-
dc.subject.keywordR & D efficiency-
dc.subject.keywordregulation-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaArtificial Intelligence-
dc.subject.subareaComputer Science Applications-
dc.subject.subareaComputer Vision and Pattern Recognition-
dc.subject.subareaInformation Systems and Management-
dc.subject.subareaHealth Informatics-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Joo, Yeoun.Lee Image
Joo, Yeoun.Lee이주연
Department of Industrial Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.