Ajou University repository

Adaptive Beam Size Design for LEO Satellite Networks with Doppler Shift Compensation
Citations

SCOPUS

0

Citation Export

Publication Year
2022-01-01
Journal
APWCS 2022 - 2022 IEEE VTS Asia Pacific Wireless Communications Symposium
Publisher
Institute of Electrical and Electronics Engineers Inc.
Citation
APWCS 2022 - 2022 IEEE VTS Asia Pacific Wireless Communications Symposium, pp.26-30
Keyword
Beam sizeDoppler shiftLow Earth Orbit (LEO) satellite networkOFDMSubcarrier spacing
Mesh Keyword
Beam sizeDoppler-shift compensationEarth orbitsLow earth orbit satellite networkLow earth orbit satellitesOrthogonal frequency-division multiplexingSatellite altitudesSatellite beamsSatellite networkSubcarrier spacing
All Science Classification Codes (ASJC)
Safety, Risk, Reliability and QualityArtificial IntelligenceComputer Networks and CommunicationsSignal Processing
Abstract
Over the last few years, Low Earth Orbit (LEO) satellite communication systems have been gaining much attention for fulfilling seamless global coverage requirements for 5G and beyond networks. One of the critical issues in the LEO satellite links is large Doppler shift caused by extremely high mobility of the LEO satellites. Motivated by this, LEO satellite beam size problems are tackled in this paper regarding Doppler shift and the LEO satellite altitudes. We make use of a simple Doppler shift calculation method, and assume a practical Doppler shift compensation scenario to reduce the burden at the ground user terminal. Two STARLINK satellites orbital planes which are in the range of LEO and Very-Low Earth Orbit (VLEO) altitudes are used. We evaluate the bit error rate (BER) performance versus the beam size according to the satellite altitudes, carrier frequency, and subcarrier spacing of Orthogonal Frequency Division Multiplexing (OFDM). The reliable LEO satellite beam size can be decided from the simulation results. Notably, it can help design the beam size of the LEO satellite networks based on 5G standard.
Language
eng
URI
https://aurora.ajou.ac.kr/handle/2018.oak/36780
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85141510506&origin=inward
DOI
https://doi.org/10.1109/apwcs55727.2022.9906490
Journal URL
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9906453
Type
Conference
Funding
This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2022-2018-0-01424) supervised by the IITP(Institute for Information communications Technology Promotion) and by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1A4A1030775).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Kim, Jae-Hyun Image
Kim, Jae-Hyun김재현
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.