Ajou University repository

PADS: Performance-Aware Dynamic Scheduling for Effective MapReduce Computation in Heterogeneous Clusters
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorHamandawana, Prince-
dc.contributor.authorMativenga, Ronnie-
dc.contributor.authorKwon, Se Jin-
dc.contributor.authorChung, Tae Sun-
dc.date.issued2018-10-29-
dc.identifier.issn1552-5244-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36269-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057269037&origin=inward-
dc.description.abstractA lot of previous works on Map-Reduce improved job completion performance through implementing additional instrumentation modules which collects system level information for making scheduling decisions. However the extra instrumentation may not scale well with increasing number of task-trackers. To this end, we design PADS, a lightweight scheduler which uses time prediction to schedule tasks without additional instrumentation modules. Results shows PADS improves performance by 6%, 12%, and 9% as compared to ESAMR, LA, and DDAS respectively.-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshDynamic scheduling-
dc.subject.meshHadoop-
dc.subject.meshHeterogeneity-
dc.subject.meshHeterogeneous clusters-
dc.subject.meshJob completion-
dc.subject.meshMap-reduce-
dc.subject.meshScheduling decisions-
dc.subject.meshTime predictions-
dc.titlePADS: Performance-Aware Dynamic Scheduling for Effective MapReduce Computation in Heterogeneous Clusters-
dc.typeConference-
dc.citation.conferenceDate2018.9.10. ~ 2018.9.13.-
dc.citation.conferenceName2018 IEEE International Conference on Cluster Computing, CLUSTER 2018-
dc.citation.editionProceedings - 2018 IEEE International Conference on Cluster Computing, CLUSTER 2018-
dc.citation.endPage161-
dc.citation.startPage160-
dc.citation.titleProceedings - IEEE International Conference on Cluster Computing, ICCC-
dc.citation.volume2018-September-
dc.identifier.bibliographicCitationProceedings - IEEE International Conference on Cluster Computing, ICCC, Vol.2018-September, pp.160-161-
dc.identifier.doi10.1109/cluster.2018.00032-
dc.identifier.scopusid2-s2.0-85057269037-
dc.subject.keywordHadoop-
dc.subject.keywordHeterogeneity-
dc.subject.keywordMapReduce-
dc.subject.keywordScheduling-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaSoftware-
dc.subject.subareaHardware and Architecture-
dc.subject.subareaSignal Processing-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

HAMANDAWANA PRINCE Image
HAMANDAWANA PRINCEHAMANDAWANA, PRINCE
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.