목적사회 전반적으로 퍼진 개인의 취향에 대해 존중하는 분위기는 소비 트렌드를 바꾸었다. 그에 따라 여행 산업에서도 소비자 개인의 취향을 반영하는 맞춤형 여행이 새로운 트렌드로 주목받고 있다. 특히 여행 산업 분야 중 하나인 ‘영화 관광’에 대한 관심이 커지고 있음에 주목하였다. 영화를 시청하며 발생하는 개인의 여행 동기를 맞춤형 여행 제안으로 충족시키고자 하며, 이는 ‘영화 관광 산업’의 지속적 발전의 촉진제가 될 것으로 기대한다.
<br>설계/방법론/접근본 연구에서는 시청자가 실제로 방문하고 싶은 영화 속 촬영지 정보를 ‘OCR’을 통해 추출, 제안하는 방법론을 구현하였다. 먼저, 실시간 이미지 프로세싱 라이브러리인 ‘OpenCV’를 활용하여 사용자가 선택한 영화속 장면을 추출 받는다. 또한, 딥러닝 기반의 텍스트 영역 탐지모델인 ‘EAST 모델’을 활용하여 해당 장면 이미지에서 문자가 위치한 곳을 탐지하여 검출한다. 검출한 이미지는 ‘OpenCV 내장 함수’를 사용해 전처리하여 인식의 정확도를 높인다. 마지막으로 광학 문자 인식 엔진인 ‘Tesseract’를 사용하여 이미지속 문자를 인식 가능한 텍스트로 변환한 후, ‘Google Map API’를 통해 실제 위치 정보를 반환한다.
<br>의의본 연구는 기존의 영화 관광에서 나아가, 4차 산업 기술을 활용한 개인 맞춤 관광 콘텐츠를 제공해준다는 점에서 큰 의의가 있다. 이는 앞으로 여행사와 함께 영화 관광 패키지 상품 개발에 활용될 수 있다. 또한 국내에서 해외로의 유입뿐만 아니라, 해외에서 국내로의 유입에 활용될 가능성 역시 내포하고 있다.