Ajou University repository

Crash Recovery Techniques for Flash Storage Devices Leveraging Flash Translation Layer: A Reviewoa mark
Citations

SCOPUS

4

Citation Export

Publication Year
2023-03-01
Publisher
MDPI
Citation
Electronics (Switzerland), Vol.12
Keyword
crash recoveryflash memoryFTLNANDpower failuresoftware defined modulestorage management
All Science Classification Codes (ASJC)
Control and Systems EngineeringSignal ProcessingHardware and ArchitectureComputer Networks and CommunicationsElectrical and Electronic Engineering
Abstract
The flash storage is a type of nonvolatile semiconductor device that is operated continuously and has been substituting the hard disk or secondary memory in several storage markets, such as PC/laptop computers, mobile devices, and is also used as an enterprise server. Moreover, it offers a number of benefits, including compact size, low power consumption, quick access, easy mobility, heat dissipation, shock tolerance, data preservation during a power outage, and random access. Different embedded system products, including digital cameras, smartphones, personal digital assistants (PDA), along with sensor devices, are currently integrating flash memory. However, as flash memory requires unique capabilities such as “erase before write” as well as “wear-leveling”, a FTL (flash translation layer) is added to the software layer. The FTL software module overcomes the problem of performance that arises from the erase before write operation and wear-leveling, i.e., flash memory does not allow for an in-place update, and therefore a block must be erased prior to overwriting upon the present data. In the meantime, flash storage devices face challenges of failure and thus they must be able to recover metadata (as well as address mapping information), including data after a crash. The FTL layer is responsible for and intended for use in crash recovery. Although the power-off recovery technique is essential for portable devices, most FTL algorithms do not take this into account. In this paper, we review various schemes of crash recovery leveraging FTL for flash storage devices. We illustrate the classification of the FTL algorithms. Moreover, we also discuss the various metrics and parameters evaluated for comparison with other approaches by each scheme, along with the flash type. In addition, we made an analysis of the FTL schemes. We also describe meaningful considerations which play a critical role in the design development for power-off recovery employing FTL.
ISSN
2079-9292
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/33342
DOI
https://doi.org/10.3390/electronics12061422
Fulltext

Type
Review
Funding
This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2021-0-02051) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation) and the BK21 FOUR program of the National Research Foundation of Korea funded by the Ministry of Education (NRF5199991014091).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Chung, Tae-Sun Image
Chung, Tae-Sun정태선
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.