Low-dimensional transition-metal dichalcogenides (TMDs) have recently emerged as promising materials for electronics and optoelectronics. In particular, photodetectors based on mono-and multilayered molybdenum disulfide (MoS2) have received much attention owing to their outstanding properties, such as high sensitivity and responsivity. In this study, photodetectors based on dispersed MoS2 nanoflakes (NFs) are demonstrated. MoS2 NFs interact with Ag nanoparticles (NPs) via low-temperature annealing, which plays a crucial role in determining device characteristics such as good sensitivity and short response time. The fabricated devices exhibited a rapid response and recovery, good photo-responsivity, and a high on-to-off photocurrent ratio under visible light illumination with an intensity lower than 0.5 mW/cm2.
Funding: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2021R1F1A1047036 and NRF-2018R1D1A1B07041253). This research was also supported by Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (Grant No. 2020R1A6C101A184).