Ajou University repository

Joint message-passing and convex optimization framework for energy-efficient surveillance UAV schedulingoa mark
Citations

SCOPUS

19

Citation Export

Publication Year
2020-09-01
Publisher
MDPI AG
Citation
Electronics (Switzerland), Vol.9, pp.1-20
Keyword
Charging schedulingEnergy efficiencyOptimizationSurveillanceUAVs
All Science Classification Codes (ASJC)
Control and Systems EngineeringSignal ProcessingHardware and ArchitectureComputer Networks and CommunicationsElectrical and Electronic Engineering
Abstract
In modern surveillance systems, the use of unmanned aerial vehicles (UAVs) has been actively discussed in order to extend target monitoring areas, even for an extreme circumstances. This paper proposes an energy-efficient UAV-based surveillance system that operates from two different sequential methods. First, the proposed algorithm pursues energy-efficient operations by deactivating selected surveillance cameras on the UAVs located in overlapping areas. For this objective, a message-passing based algorithm is used because the overlapping situations can be formulated using a max-weight independent set. Next, the unscheduled UAVs based on the message-passing fly to the charging towers to be charged. This algorithm computes the optimal matching between the UAVs and charging towers and the amount of energy allocation for the scheduled UAV-tower pairs. This joint optimization is initially formulated as non-convex, and it is then reformulated to be convex, which can guarantee optimal solutions. The proposed framework achieves the desired performance, as presented in the performance evaluation.
ISSN
2079-9292
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/31534
DOI
https://doi.org/10.3390/electronics9091475
Fulltext

Type
Article
Funding
Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-2017-0-01637) supervised by the IITP (Institute for Information & Communications Technology Promotion).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Soyi Image
Jung, Soyi정소이
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.