The microstructural, mechanical, and tribological behaviors of electroplated Ni on Cu conducting substrates have been investigated in this study. The microstructural studies were performed by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The results showed that initially (111) with (220), (200) Ni texture components were predominant in the coating, and increasing the current density from 0.1 to 0.5 A/cm2 led to the development of a strong (111) texture. The presence of ultrafine grains coupled with a (111) Ni texture improved the coating microhardness and wear properties significantly. It was shown that with an increase in current density, wear resistance of the coatings improved significantly and the electrical resistivity increased due to the highly populated grain boundaries.
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07044481) to B.A. and (NRF-2018R1D1A1B07044706) to A.S.