Ajou University repository

유연 미케노발광 소자 제작 및 광학 특성 연구
  • 유경민
Citations

SCOPUS

0

Citation Export

Advisor
하나영
Affiliation
아주대학교 대학원
Department
일반대학원 에너지시스템학과
Publication Year
2024-02
Publisher
The Graduate School, Ajou University
Keyword
MechanoluminescencePDMS
Description
학위논문(석사)--에너지시스템학과,2024. 2
Abstract
미케노발광은 물체의 구조 및 형태의 변형, 결정 및 결합의 파괴 등의 기계적 자극에 의해 물체가 빛을 방출하거나 마찰에 의해 발생하는 마찰열, 화학 반응, 마찰전기 등에 의해 물체가 빛을 방출하는 일종의 발광 현상이다. 본 연구는 마찰전기에 의해 여기되어 빛을 방출하는 미케노발광 입자를 부드러운 탄성 소재에 도입하여 유연한 발광 소자를 제작하였고, 소자에 유기 염료를 첨가하여 소자의 발광 색을 변환하였다. _x000D_ <br>소자는 스핀 코팅 및 열처리 과정을 통해 제작되는 매트릭스를 적층으로 형성하여 구현되었으며, 스핀 코팅 회전 속도와 적층 횟수의 조절을 통해 소자의 두께 조건을 통제할 수 있다. 유기 염료가 첨가된 소자는 미케노발광의 재흡수 및 방출을 효과적으로 이루기 위한 전략으로 염료가 첨가된 매트릭스 층을 미케노발광 매트릭스에 적층 형성하는 방법을 통해 색 변환을 성공적으로 달성하였으며, 이는 소자의 광발광 및 미케노발광 측정을 통한 스펙트럼 분석으로 확인하였다. _x000D_ <br>추가적으로 소자 표면에 나노구조를 도입하여 광학적 기능성을 추가하고자 하였다. 나노구조는 310 nm, 380 nm, 417 nm의 주기를 갖는 1차원 나노구조를 사용하였고 나노구조가 없는 시료와 비교하여 광발광 및 미케노발광 스펙트럼을 분석하였다. 310 nm의 나노구조가 도입된 소자의 미케노발광 스펙트럼에서 특정 파장 영역이 파이는 현상이 관찰되어, 유연 미케노발광 소자에 나노구조를 도입하여 광학적 기능성을 통제하고자 하는 접근이 효과가 있음을 시사한다.|Mechanoluminescence(ML) is a luminescent phenomenon where objects emit light due to mechanical stimuli such as deformation or fracture. This also includes light emission due to frictional heat, chemical reactions, or frictional electricity. In this study, we incorporated ML particles, generated by frictional electricity, into a soft elastomer to fabricate a flexible ML device. Additionally, organic dyes were added to the device to color conversion._x000D_ <br>The device was fabricated by stacking matrices formed through spin coating and heat treatment processes, with the thickness controlled by adjusting the spin-coating rotation speed and the number of stacking layer. The successful color transformation of the device was achieved by strategically incorporating dye-doped matrix layers onto the ML matrix, effectively facilitating the re-absorption and emission of photoluminescence(PL). This accomplishment was verified through spectrum analysis using measurements of the PL and ML of device._x000D_ <br>Moreover, our objective was to adopt the optical functionality of the device through the incorporation of nanostructures onto its surface. One-dimensional nanostructures with periodicities of 310 nm, 380 nm, and 417 nm were employed. Comparative analysis of PL and ML spectra was performed on samples with and without nanostructures. This phenomenon suggests the effectiveness of introducing nanostructures into flexible ML devices for the modulation of optical functionalities. Through this, it implies the potential for manipulating optical functions in flexible ML devices by integrating nanostructures.
Alternative Abstract
Mechanoluminescence(ML) is a luminescent phenomenon where objects emit light due to mechanical stimuli such as deformation or fracture. This also includes light emission due to frictional heat, chemical reactions, or frictional electricity. In this study, we incorporated ML particles, generated by frictional electricity, into a soft elastomer to fabricate a flexible ML device. Additionally, organic dyes were added to the device to color conversion._x000D_ <br>The device was fabricated by stacking matrices formed through spin coating and heat treatment processes, with the thickness controlled by adjusting the spin-coating rotation speed and the number of stacking layer. The successful color transformation of the device was achieved by strategically incorporating dye-doped matrix layers onto the ML matrix, effectively facilitating the re-absorption and emission of photoluminescence(PL). This accomplishment was verified through spectrum analysis using measurements of the PL and ML of device._x000D_ <br>Moreover, our objective was to adopt the optical functionality of the device through the incorporation of nanostructures onto its surface. One-dimensional nanostructures with periodicities of 310 nm, 380 nm, and 417 nm were employed. Comparative analysis of PL and ML spectra was performed on samples with and without nanostructures. This phenomenon suggests the effectiveness of introducing nanostructures into flexible ML devices for the modulation of optical functionalities. Through this, it implies the potential for manipulating optical functions in flexible ML devices by integrating nanostructures.
Language
kor
URI
https://aurora.ajou.ac.kr/handle/2018.oak/39200
Journal URL
https://dcoll.ajou.ac.kr/dcollection/common/orgView/000000033752
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Total Views & Downloads

File Download

  • There are no files associated with this item.