Ajou University repository

리튬 이온 배터리 내부 파라미터 및 CNN-GRU를 활용한 배터리 수명 추정
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.author박현룡-
dc.contributor.author임희성-
dc.contributor.author이교범-
dc.date.issued2023-03-
dc.identifier.issn1975-8359-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/38722-
dc.identifier.urihttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002937571-
dc.description.abstractThis paper proposes an estimation method for Lithium-Ion Batteries SOH by learning the batteries’ internal parameters using the Convolution Neural Network and the Gated Recurrent Unit. Various equivalent circuit models exist to represent the batteries’ internal parameters. Among these equivalent circuit models, the most representative model is the Randles model, and the data measured based on the Randles model is used as learning input data. The internal parameters of batteries change non-linearly depending on the operation condition and use time. So, nonlinear features are extracted using the CNN input as the batteries' parameters. The extracted features are used as an input of the GRU to learn the characteristics of change over time, and SOH is predicted through this. The learning dataset utilizes 17IND10 LibForSecUse of EMPIR, which validates the performance of the proposed model.-
dc.language.isoKor-
dc.publisher대한전기학회-
dc.title리튬 이온 배터리 내부 파라미터 및 CNN-GRU를 활용한 배터리 수명 추정-
dc.title.alternativeSOH Estimation of Batteries using Lithium-Ion Internal Parameters with Convolution Neural Network and Gated Recurrent-
dc.typeArticle-
dc.citation.endPage394-
dc.citation.number3-
dc.citation.startPage387-
dc.citation.title전기학회논문지-
dc.citation.volume72-
dc.identifier.bibliographicCitation전기학회논문지, Vol.72 No.3, pp.387-394-
dc.subject.keywordLithium-Ion Battery-
dc.subject.keywordSOH-
dc.subject.keywordInternal Resistance-
dc.subject.keywordCNN-
dc.subject.keywordGRU-
dc.type.otherArticle-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

 Lee, Kyo-Beum Image
Lee, Kyo-Beum이교범
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.