Ajou University repository

Real-Time Anomaly Detection in Crowd Surveillance Using 3D ResNet and Optical Flow
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorKhalid, Maira-
dc.contributor.authorMohsin, Ahmed Raza-
dc.contributor.authorChandroth, Jisi-
dc.contributor.authorAli, Jehad-
dc.contributor.authorRoh, Byeong Hee-
dc.date.issued2025-01-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/38577-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105005717771&origin=inward-
dc.description.abstractIn the evolving field of video surveillance, this study introduces Dynamic Crowd Surveillance (DCS)-Detect, an advanced deep learning model designed for real-time detection of suspicious activities across diverse scenarios. Leveraging a 3D ResNet-18 convolutional neural network (CNN), DCS-Detect effectively captures both spatial and temporal patterns in video frames, enabling accurate identification of anomalous behaviors. Customized to classify 13 distinct anomaly types from the DCSASS dataset, DCS-Detect addresses the challenges posed by dynamic environments by integrating a comprehensive data preprocessing pipeline. This pipeline includes frame sampling, augmentation, normalization, and optical flow analysis, all of which enhance the models generalization capabilities. Rigorous experimentation demonstrates DCS-Detects high performance, achieving an accuracy, precision, recall, and F1 score of 9 8. 6 5%, underscoring its robustness and reliability.-
dc.description.sponsorshipThis work was supported partially by the BK21 FOUR program of the National Research Foundation of Korea funded by the Ministry of Education (NRF5199991514504).-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.mesh3d convolutional neural network-
dc.subject.meshConvolutional neural network-
dc.subject.meshCrowd surveillance-
dc.subject.meshDeep learning-
dc.subject.meshDynamic crowd surveillance-
dc.subject.meshLearning models-
dc.subject.meshOptical--
dc.subject.meshReal-time anomaly detections-
dc.subject.meshReal-time detection-
dc.subject.meshVideo surveillance-
dc.titleReal-Time Anomaly Detection in Crowd Surveillance Using 3D ResNet and Optical Flow-
dc.typeConference-
dc.citation.conferenceDate2025.01.15.~2025.01.17.-
dc.citation.conferenceName39th International Conference on Information Networking, ICOIN 2025-
dc.citation.edition39th International Conference on Information Networking, ICOIN 2025-
dc.citation.endPage516-
dc.citation.startPage513-
dc.citation.titleInternational Conference on Information Networking-
dc.identifier.bibliographicCitationInternational Conference on Information Networking, pp.513-516-
dc.identifier.doi10.1109/icoin63865.2025.10992938-
dc.identifier.scopusid2-s2.0-105005717771-
dc.identifier.urlhttp://www.icoin.org/-
dc.subject.keyword3D convolutional neural network-
dc.subject.keyworddeep learning-
dc.subject.keywordDynamic crowd surveillance-
dc.subject.keywordReal-time anomaly detection-
dc.type.otherConference Paper-
dc.identifier.pissn19767684-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaInformation Systems-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

JEHAD, ALI Image
JEHAD, ALIALI JEHAD
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.