| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Koo, Bonsoo | - |
| dc.contributor.author | Lee, Jungin | - |
| dc.date.issued | 2025-01-01 | - |
| dc.identifier.issn | 1563-5139 | - |
| dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/38483 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217532208&origin=inward | - |
| dc.description.abstract | For an integer (Formula presented.), let (Formula presented.) be the smallest positive integer m such that for every pairwise coprime integers (Formula presented.), every (Formula presented.) integral matrix can be represented by the diagonal quadratic form (Formula presented.). In this paper, we prove that (Formula presented.) and (Formula presented.) for every integer (Formula presented.). | - |
| dc.language.iso | eng | - |
| dc.publisher | Taylor and Francis Ltd. | - |
| dc.title | Integral matrices as diagonal quadratic forms II | - |
| dc.type | Article | - |
| dc.citation.title | Linear and Multilinear Algebra | - |
| dc.identifier.bibliographicCitation | Linear and Multilinear Algebra | - |
| dc.identifier.doi | 10.1080/03081087.2025.2464646 | - |
| dc.identifier.scopusid | 2-s2.0-85217532208 | - |
| dc.identifier.url | http://www.tandf.co.uk/journals/titles/03081087.asp | - |
| dc.subject.keyword | Diagonal quadratic forms | - |
| dc.subject.keyword | integral matrices | - |
| dc.subject.keyword | universal quadratic forms | - |
| dc.type.other | Article | - |
| dc.identifier.pissn | 03081087 | - |
| dc.description.isoa | false | - |
| dc.subject.subarea | Algebra and Number Theory | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.