Citation Export
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Baek, Seung Hyun | - |
| dc.contributor.author | Hong, Suji | - |
| dc.contributor.author | Kim, Eunae | - |
| dc.contributor.author | Park, Sunyoung | - |
| dc.contributor.author | Lee, Minyoung | - |
| dc.contributor.author | Park, Jinsu | - |
| dc.contributor.author | Cho, Yoonsuk | - |
| dc.contributor.author | Yoon, Hyunjun | - |
| dc.contributor.author | Kim, Daeseung | - |
| dc.contributor.author | Yun, Youngkwang | - |
| dc.contributor.author | Kim, Youbin | - |
| dc.contributor.author | Choi, Yoonjung | - |
| dc.contributor.author | Kang, Keunsoo | - |
| dc.contributor.author | Jung, Sangyong | - |
| dc.contributor.author | Kim, Jun Pyo | - |
| dc.contributor.author | Kim, Eunha | - |
| dc.contributor.author | Seo, Sang Won | - |
| dc.contributor.author | Jung, Yong Keun | - |
| dc.contributor.author | Jo, Dong Gyu | - |
| dc.date.issued | 2025-02-24 | - |
| dc.identifier.issn | 2198-3844 | - |
| dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/38412 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85214123910&origin=inward | - |
| dc.description.abstract | β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology. The research reveals that the anticancer agent 6-thioguanosine (6-TG) markedly diminishes BACE1 expression without eliciting cytotoxicity while enhancing microglial phagocytic activity, and ameliorate cognitive impairments with reducing Aβ accumulation in AD mice. Leveraging advanced deep learning-based tool for target identification, and corroborating with surface plasmon resonance assays, it is elucidated that 6-TG directly interacts with RAGE, modulating BACE1 expression through the JAK2-STAT1 pathway and elevating soluble RAGE (sRAGE) levels in the brain. The findings illuminate the therapeutic potential of 6-TG in ameliorating AD manifestations and advocate for small molecule strategies to increase brain sRAGE levels, offering a strategic alternative to the challenges posed by the complexity of AD. | - |
| dc.description.sponsorship | This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Nos. NRF\u20102022R1I1A1A01072791, RS\u20102019\u2010NR040057, RS\u20102024\u201000399237, and RS\u20102024\u201000345742). Additionally, this work was funded by a grant from the Ministry of Oceans and Fisheries\u2019 R&D project, Korea (No. RS\u20102021\u2010KS211513), and the Future Medicine 20*30 Project of Samsung Medical Center (No. SMX1240561). | - |
| dc.language.iso | eng | - |
| dc.publisher | John Wiley and Sons Inc | - |
| dc.subject.mesh | 6-thioguanosine | - |
| dc.subject.mesh | Advanced glycation end products | - |
| dc.subject.mesh | Alzheimer disease | - |
| dc.subject.mesh | Alzheimers disease | - |
| dc.subject.mesh | Amyloid-β | - |
| dc.subject.mesh | BACE1 | - |
| dc.subject.mesh | Deep learning | - |
| dc.subject.mesh | Drug repurposing | - |
| dc.subject.mesh | Receptor for advanced glycation endproduct | - |
| dc.subject.mesh | Repurposing | - |
| dc.subject.mesh | Alzheimer Disease | - |
| dc.subject.mesh | Amyloid beta-Peptides | - |
| dc.subject.mesh | Amyloid Precursor Protein Secretases | - |
| dc.subject.mesh | Animals | - |
| dc.subject.mesh | Aspartic Acid Endopeptidases | - |
| dc.subject.mesh | Brain | - |
| dc.subject.mesh | Disease Models, Animal | - |
| dc.subject.mesh | Humans | - |
| dc.subject.mesh | Male | - |
| dc.subject.mesh | Mice | - |
| dc.subject.mesh | Mice, Transgenic | - |
| dc.subject.mesh | Receptor for Advanced Glycation End Products | - |
| dc.title | A Novel RAGE Modulator Induces Soluble RAGE to Reduce BACE1 Expression in Alzheimer's Disease | - |
| dc.type | Article | - |
| dc.citation.number | 8 | - |
| dc.citation.title | Advanced Science | - |
| dc.citation.volume | 12 | - |
| dc.identifier.bibliographicCitation | Advanced Science, Vol.12 No.8 | - |
| dc.identifier.doi | 10.1002/advs.202407812 | - |
| dc.identifier.pmid | 39755927 | - |
| dc.identifier.scopusid | 2-s2.0-85214123910 | - |
| dc.identifier.url | http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2198-3844 | - |
| dc.subject.keyword | 6-Thioguanosine (6-TG) | - |
| dc.subject.keyword | Alzheimer's disease (AD) | - |
| dc.subject.keyword | amyloid-β (Aβ) | - |
| dc.subject.keyword | BACE1 | - |
| dc.subject.keyword | deep learning | - |
| dc.subject.keyword | drug repurposing | - |
| dc.subject.keyword | RAGE | - |
| dc.type.other | Article | - |
| dc.identifier.pissn | 21983844 | - |
| dc.subject.subarea | Medicine (miscellaneous) | - |
| dc.subject.subarea | Chemical Engineering (all) | - |
| dc.subject.subarea | Materials Science (all) | - |
| dc.subject.subarea | Biochemistry, Genetics and Molecular Biology (miscellaneous) | - |
| dc.subject.subarea | Engineering (all) | - |
| dc.subject.subarea | Physics and Astronomy (all) | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.