Ajou University repository

Tandem reductive hydroformylation: A mechanism for selective synthesis of straight-chain α-alcohols by CO2 hydrogenation
  • Irshad, Muhammad ;
  • Jo, Heuntae ;
  • Ahmed, Sheraz ;
  • Yoon, Wonjoong ;
  • Kim, Seok Ki ;
  • Chun, Hee Joon ;
  • Kim, Jaehoon
Citations

SCOPUS

12

Citation Export

DC Field Value Language
dc.contributor.authorIrshad, Muhammad-
dc.contributor.authorJo, Heuntae-
dc.contributor.authorAhmed, Sheraz-
dc.contributor.authorYoon, Wonjoong-
dc.contributor.authorKim, Seok Ki-
dc.contributor.authorChun, Hee Joon-
dc.contributor.authorKim, Jaehoon-
dc.date.issued2025-05-15-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/38400-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85213235503&origin=inward-
dc.description.abstractThe direct conversion of CO2 into linear α-alcohols (C3+ alcohol) in high yields is challenging because of the complexity arising from multiple competitive reactions. No studies have yet elucidated why CO2 hydrogenation preferentially produces straight-chain C3+ alcohols rather than branched alcohols over metal oxide catalysts. In this study, we propose a new insight into the existence of tandem reductive hydroformylation as a mechanism for enhancing linear alcohol formation. We demonstrated a Na-promoted bimetallic Cu and Fe catalyst (Na–CuFe) that generated a C3+ alcohol-rich product (36.3 % of total products, 72.2 % of total alcohols) at a CO2 conversion of 14.2 %. The Na–CuFe catalyst developed Cu and Fe5C2 for the reverse water gas shift (RWGS) and Fischer–Tropsch synthesis (FTS) sites, respectively. The low Fe content resulted in the development of a Cu–Fe5C2 active interface. Operando in situ investigation demonstrated high CO owing to active RWGS reaction boosted chain growth for C3+ alcohols. Density functional theory (DFT) simulation indicated the preferred CHO insertion over CO for C–C coupling. Thus, the Cu–Fe5C2 interface promotes the hydroformylation of on-site-generated intermediate via FTS and subsequent reduction of C3+ aldehydes to their corresponding C3+ alcohols.-
dc.description.sponsorshipThis study was funded by a National Research Council of Science & Technology (NST) grant from the Ministry of Science and ICT (MSIT), Republic of Korea (No. CAP21012-100) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) under the Ministry of Trade, Industry & Energy (MOTIE), Republic of Korea (No. 20224C10300010 and 20224000000440). A few experiments at the 9C beamline of the Pohang Accelerator Laboratory (PAL, Republic of Korea) were carried out under contract No. 2024-3rd-9B-020.-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.subject.meshBimetallics-
dc.subject.meshCO2 conversion-
dc.subject.meshCompetitive reactions-
dc.subject.meshDirect conversion-
dc.subject.meshFischer Tropsch-
dc.subject.meshHigher yield-
dc.subject.meshLinear alcohols-
dc.subject.meshMetal oxides catalysts-
dc.subject.meshSelective synthesis-
dc.subject.meshTropsch synthesis-
dc.titleTandem reductive hydroformylation: A mechanism for selective synthesis of straight-chain α-alcohols by CO2 hydrogenation-
dc.typeArticle-
dc.citation.titleApplied Catalysis B: Environmental-
dc.citation.volume365-
dc.identifier.bibliographicCitationApplied Catalysis B: Environmental, Vol.365-
dc.identifier.doi10.1016/j.apcatb.2024.124978-
dc.identifier.scopusid2-s2.0-85213235503-
dc.identifier.urlhttps://www.sciencedirect.com/science/journal/09263373-
dc.subject.keywordAlcohols-
dc.subject.keywordCO2 conversion-
dc.subject.keywordCopper-
dc.subject.keywordHydroformylation-
dc.subject.keywordIron-
dc.type.otherArticle-
dc.identifier.pissn09263373-
dc.description.isoafalse-
dc.subject.subareaCatalysis-
dc.subject.subareaEnvironmental Science (all)-
dc.subject.subareaProcess Chemistry and Technology-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Kim, Seok Ki  Image
Kim, Seok Ki 김석기
Department of Chemical Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.