Ajou University repository

Strong cohomological rigidity of Bott manifolds
Citations

SCOPUS

1

Citation Export

DC Field Value Language
dc.contributor.authorChoi, Suyoung-
dc.contributor.authorHwang, Taekgyu-
dc.contributor.authorJang, Hyeontae-
dc.date.issued2025-07-01-
dc.identifier.issn1090-2082-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/38280-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003699042&origin=inward-
dc.description.abstractWe show that two Bott manifolds are diffeomorphic if and only if their integral cohomology rings are isomorphic as graded rings. In fact, we prove that any graded cohomology ring isomorphism between two Bott manifolds is induced by a diffeomorphism.-
dc.description.sponsorshipThis research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) ( RS-2021-NR060141 and RS-2025-00521982 ).-
dc.language.isoeng-
dc.publisherAcademic Press Inc.-
dc.titleStrong cohomological rigidity of Bott manifolds-
dc.typeArticle-
dc.citation.titleAdvances in Mathematics-
dc.citation.volume473-
dc.identifier.bibliographicCitationAdvances in Mathematics, Vol.473-
dc.identifier.doi10.1016/j.aim.2025.110305-
dc.identifier.scopusid2-s2.0-105003699042-
dc.identifier.urlhttps://www.sciencedirect.com/science/journal/00018708-
dc.subject.keywordBott manifold-
dc.subject.keywordCohomological rigidity-
dc.subject.keywordStrong cohomological rigidity-
dc.subject.keywordToric topology-
dc.type.otherArticle-
dc.identifier.pissn00018708-
dc.description.isoafalse-
dc.subject.subareaMathematics (all)-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Choi, Suyoung  Image
Choi, Suyoung 최수영
Department of Mathematics
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.