Citation Export
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Junyoung | - |
| dc.contributor.author | Jung, Soyi | - |
| dc.date.issued | 2024-01-01 | - |
| dc.identifier.issn | 2162-1241 | - |
| dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/38144 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217683242&origin=inward | - |
| dc.description.abstract | In next-generation 6G scenarios, non-terrestrial net-works employing low Earth orbit (LEO) satellites will be pivotal in achieving ultra-wide coverage, ultra-connectivity, and ultra-precision. Although LEO satellites provide comprehensive global coverage, their rapid mobility introduces frequent handovers, requiring sophisticated scheduling to maintain uninterrupted service. This paper proposes a deep reinforcement learning-based scheduling algorithm in order to improve service rate and continuity for terrestrial users in multi-LEO) environments. | - |
| dc.description.sponsorship | This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(RS-2024-00359330). | - |
| dc.language.iso | eng | - |
| dc.publisher | IEEE Computer Society | - |
| dc.subject.mesh | Hand over | - |
| dc.subject.mesh | Low earth orbit satellites | - |
| dc.subject.mesh | Net work | - |
| dc.subject.mesh | Non-terrestrial network | - |
| dc.subject.mesh | Reinforcement learnings | - |
| dc.subject.mesh | Satellite scheduling | - |
| dc.subject.mesh | Scheduling optimization | - |
| dc.subject.mesh | Terrestrial networks | - |
| dc.subject.mesh | Ultra precision | - |
| dc.subject.mesh | Ultra-wide | - |
| dc.title | Low Earth Orbit Satellite Scheduling Optimization Based on Deep Reinforcement Learning | - |
| dc.type | Conference | - |
| dc.citation.conferenceDate | 2024.10.16.~2024.10.18. | - |
| dc.citation.conferenceName | 15th International Conference on Information and Communication Technology Convergence, ICTC 2024 | - |
| dc.citation.edition | ICTC 2024 - 15th International Conference on ICT Convergence: AI-Empowered Digital Innovation | - |
| dc.citation.endPage | 519 | - |
| dc.citation.startPage | 518 | - |
| dc.citation.title | International Conference on ICT Convergence | - |
| dc.identifier.bibliographicCitation | International Conference on ICT Convergence, pp.518-519 | - |
| dc.identifier.doi | 10.1109/ictc62082.2024.10827172 | - |
| dc.identifier.scopusid | 2-s2.0-85217683242 | - |
| dc.identifier.url | http://ieeexplore.ieee.org/xpl/conferences.jsp | - |
| dc.subject.keyword | deep reinforcement learning | - |
| dc.subject.keyword | handover | - |
| dc.subject.keyword | LEO satellites | - |
| dc.subject.keyword | non-terrestrial networks | - |
| dc.subject.keyword | scheduling optimization | - |
| dc.type.other | Conference Paper | - |
| dc.identifier.pissn | 21621233 | - |
| dc.description.isoa | false | - |
| dc.subject.subarea | Information Systems | - |
| dc.subject.subarea | Computer Networks and Communications | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.