Ajou University repository

Low Earth Orbit Satellite Scheduling Optimization Based on Deep Reinforcement Learning
Citations

SCOPUS

2

Citation Export

DC Field Value Language
dc.contributor.authorKim, Junyoung-
dc.contributor.authorJung, Soyi-
dc.date.issued2024-01-01-
dc.identifier.issn2162-1241-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/38144-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217683242&origin=inward-
dc.description.abstractIn next-generation 6G scenarios, non-terrestrial net-works employing low Earth orbit (LEO) satellites will be pivotal in achieving ultra-wide coverage, ultra-connectivity, and ultra-precision. Although LEO satellites provide comprehensive global coverage, their rapid mobility introduces frequent handovers, requiring sophisticated scheduling to maintain uninterrupted service. This paper proposes a deep reinforcement learning-based scheduling algorithm in order to improve service rate and continuity for terrestrial users in multi-LEO) environments.-
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(RS-2024-00359330).-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.meshHand over-
dc.subject.meshLow earth orbit satellites-
dc.subject.meshNet work-
dc.subject.meshNon-terrestrial network-
dc.subject.meshReinforcement learnings-
dc.subject.meshSatellite scheduling-
dc.subject.meshScheduling optimization-
dc.subject.meshTerrestrial networks-
dc.subject.meshUltra precision-
dc.subject.meshUltra-wide-
dc.titleLow Earth Orbit Satellite Scheduling Optimization Based on Deep Reinforcement Learning-
dc.typeConference-
dc.citation.conferenceDate2024.10.16.~2024.10.18.-
dc.citation.conferenceName15th International Conference on Information and Communication Technology Convergence, ICTC 2024-
dc.citation.editionICTC 2024 - 15th International Conference on ICT Convergence: AI-Empowered Digital Innovation-
dc.citation.endPage519-
dc.citation.startPage518-
dc.citation.titleInternational Conference on ICT Convergence-
dc.identifier.bibliographicCitationInternational Conference on ICT Convergence, pp.518-519-
dc.identifier.doi10.1109/ictc62082.2024.10827172-
dc.identifier.scopusid2-s2.0-85217683242-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/conferences.jsp-
dc.subject.keyworddeep reinforcement learning-
dc.subject.keywordhandover-
dc.subject.keywordLEO satellites-
dc.subject.keywordnon-terrestrial networks-
dc.subject.keywordscheduling optimization-
dc.type.otherConference Paper-
dc.identifier.pissn21621233-
dc.description.isoafalse-
dc.subject.subareaInformation Systems-
dc.subject.subareaComputer Networks and Communications-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Soyi Image
Jung, Soyi정소이
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.