Citation Export
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Jang, Jiseok | - |
| dc.contributor.author | Jung, Soyi | - |
| dc.date.issued | 2024-01-01 | - |
| dc.identifier.issn | 2162-1241 | - |
| dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/38139 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217631845&origin=inward | - |
| dc.description.abstract | Efficient interference management is crucial for the coexistence of terrestrial networks and non-terrestrial networks. This paper proposes an approach to optimize frequency band allocation by determining the optimal guard bandwidth, reducing interference, and improving coexistence between terrestrial networks and non-terrestrial networks. Simulation results offer guidelines for setting appropriate guard bandwidth, ensuring effective terrestrial networks and non-terrestrial networks coexistence. | - |
| dc.description.sponsorship | This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by Korean Government the Ministry of Science and Information and Communications Technology (MSIT), Information and Communications Technology (Development of 3D Spatial Satellite Communications Technology) under Grant 2021-0-00847 | - |
| dc.language.iso | eng | - |
| dc.publisher | IEEE Computer Society | - |
| dc.subject.mesh | Band allocation | - |
| dc.subject.mesh | Coexistence | - |
| dc.subject.mesh | Guard bandwidth | - |
| dc.subject.mesh | Guard-band | - |
| dc.subject.mesh | Interference management | - |
| dc.subject.mesh | Management IS | - |
| dc.subject.mesh | Non-terrestrial network | - |
| dc.subject.mesh | Reinforcement learnings | - |
| dc.subject.mesh | Terrestrial networks | - |
| dc.title | Optimized Guard Band Allocation for TN and NTN Coexistence Using Reinforcement Learning | - |
| dc.type | Conference | - |
| dc.citation.conferenceDate | 2024.10.16.~2024.10.18. | - |
| dc.citation.conferenceName | 15th International Conference on Information and Communication Technology Convergence, ICTC 2024 | - |
| dc.citation.edition | ICTC 2024 - 15th International Conference on ICT Convergence: AI-Empowered Digital Innovation | - |
| dc.citation.endPage | 964 | - |
| dc.citation.startPage | 962 | - |
| dc.citation.title | International Conference on ICT Convergence | - |
| dc.identifier.bibliographicCitation | International Conference on ICT Convergence, pp.962-964 | - |
| dc.identifier.doi | 10.1109/ictc62082.2024.10827795 | - |
| dc.identifier.scopusid | 2-s2.0-85217631845 | - |
| dc.identifier.url | http://ieeexplore.ieee.org/xpl/conferences.jsp | - |
| dc.subject.keyword | coexistence | - |
| dc.subject.keyword | deep reinforcement learning | - |
| dc.subject.keyword | guard band | - |
| dc.subject.keyword | Non-terrestrial networks | - |
| dc.subject.keyword | terrestrial networks | - |
| dc.type.other | Conference Paper | - |
| dc.identifier.pissn | 21621233 | - |
| dc.description.isoa | false | - |
| dc.subject.subarea | Information Systems | - |
| dc.subject.subarea | Computer Networks and Communications | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.