Ajou University repository

Optimized Guard Band Allocation for TN and NTN Coexistence Using Reinforcement Learning
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorJang, Jiseok-
dc.contributor.authorJung, Soyi-
dc.date.issued2024-01-01-
dc.identifier.issn2162-1241-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/38139-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217631845&origin=inward-
dc.description.abstractEfficient interference management is crucial for the coexistence of terrestrial networks and non-terrestrial networks. This paper proposes an approach to optimize frequency band allocation by determining the optimal guard bandwidth, reducing interference, and improving coexistence between terrestrial networks and non-terrestrial networks. Simulation results offer guidelines for setting appropriate guard bandwidth, ensuring effective terrestrial networks and non-terrestrial networks coexistence.-
dc.description.sponsorshipThis work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by Korean Government the Ministry of Science and Information and Communications Technology (MSIT), Information and Communications Technology (Development of 3D Spatial Satellite Communications Technology) under Grant 2021-0-00847-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.meshBand allocation-
dc.subject.meshCoexistence-
dc.subject.meshGuard bandwidth-
dc.subject.meshGuard-band-
dc.subject.meshInterference management-
dc.subject.meshManagement IS-
dc.subject.meshNon-terrestrial network-
dc.subject.meshReinforcement learnings-
dc.subject.meshTerrestrial networks-
dc.titleOptimized Guard Band Allocation for TN and NTN Coexistence Using Reinforcement Learning-
dc.typeConference-
dc.citation.conferenceDate2024.10.16.~2024.10.18.-
dc.citation.conferenceName15th International Conference on Information and Communication Technology Convergence, ICTC 2024-
dc.citation.editionICTC 2024 - 15th International Conference on ICT Convergence: AI-Empowered Digital Innovation-
dc.citation.endPage964-
dc.citation.startPage962-
dc.citation.titleInternational Conference on ICT Convergence-
dc.identifier.bibliographicCitationInternational Conference on ICT Convergence, pp.962-964-
dc.identifier.doi10.1109/ictc62082.2024.10827795-
dc.identifier.scopusid2-s2.0-85217631845-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/conferences.jsp-
dc.subject.keywordcoexistence-
dc.subject.keyworddeep reinforcement learning-
dc.subject.keywordguard band-
dc.subject.keywordNon-terrestrial networks-
dc.subject.keywordterrestrial networks-
dc.type.otherConference Paper-
dc.identifier.pissn21621233-
dc.description.isoafalse-
dc.subject.subareaInformation Systems-
dc.subject.subareaComputer Networks and Communications-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Soyi Image
Jung, Soyi정소이
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.