Citation Export
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Seongjun | - |
| dc.contributor.author | Shin, Kyu min | - |
| dc.contributor.author | Jeon, Jun seo | - |
| dc.contributor.author | Bang, Ji yoon | - |
| dc.contributor.author | Kim, Junyoung | - |
| dc.contributor.author | Jung, Soyi | - |
| dc.date.issued | 2024-12-01 | - |
| dc.identifier.issn | 2287-3880 | - |
| dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/38111 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85216429362&origin=inward | - |
| dc.description.abstract | Various traffic situations on multi-lane highways pose challenges for autonomous driving, requiring adherence to traffic rules. Traditional rule-based decision-making struggles with safety in complex environments, leading to research on deep reinforcement learning (DRL). This paper proposes a decision-making method based on proximal policy optimization (PPO) with hybrid actions. The DRL model inputs the states of the ego vehicle and surrounding vehicles, outputting continuous longitudinal control and discrete lateral lane changes. For lane changes, actuator-level steering is controlled via pure pursuit. Experiments show that agents with hybrid actions are safer than those using only continuous or discrete actions. | - |
| dc.language.iso | eng | - |
| dc.publisher | Korean Institute of Communications and Information Sciences | - |
| dc.title | A Study on Highway Driving Decision Making with Hybrid Action for Autonomous Vehicles Using Deep Reinforcement Learning | - |
| dc.type | Article | - |
| dc.citation.endPage | 1684 | - |
| dc.citation.number | 12 | - |
| dc.citation.startPage | 1671 | - |
| dc.citation.title | Journal of Korean Institute of Communications and Information Sciences | - |
| dc.citation.volume | 49 | - |
| dc.identifier.bibliographicCitation | Journal of Korean Institute of Communications and Information Sciences, Vol.49 No.12, pp.1671-1684 | - |
| dc.identifier.doi | 10.7840/kics.2024.49.12.1671 | - |
| dc.identifier.scopusid | 2-s2.0-85216429362 | - |
| dc.identifier.url | http://www.dbpia.co.kr/Journal/ArticleDetail/NODE12003203 | - |
| dc.subject.keyword | Autonomous Driving | - |
| dc.subject.keyword | Deep Reinforcement Learning | - |
| dc.subject.keyword | Highway | - |
| dc.subject.keyword | Hybrid Action | - |
| dc.subject.keyword | Lane-Change | - |
| dc.subject.keyword | PPO | - |
| dc.type.other | Article | - |
| dc.identifier.pissn | 12264717 | - |
| dc.description.isoa | false | - |
| dc.subject.subarea | Computer Networks and Communications | - |
| dc.subject.subarea | Information Systems and Management | - |
| dc.subject.subarea | Computer Science (miscellaneous) | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.