Citation Export
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Imran, Naveed | - |
| dc.contributor.author | Zhang, Jian | - |
| dc.contributor.author | Ali, Jehad | - |
| dc.contributor.author | Hameed, Sana | - |
| dc.contributor.author | Younas, Muhammad | - |
| dc.contributor.author | Hanif, Danial | - |
| dc.contributor.author | Alenazi, Mohammed J.F. | - |
| dc.contributor.author | Niaz, Fahim | - |
| dc.date.issued | 2024-01-01 | - |
| dc.identifier.issn | 2168-2208 | - |
| dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/38106 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85213956184&origin=inward | - |
| dc.description.abstract | We propose a non-contact, privacy-preserving emotion recognition framework using millimeter-wave (mm-Wave) radar and deep learning, addressing the limitations of traditional wearable and camera-based approaches. By broadcasting frequency-modulated radar pulses, the system isolates heart rate signals even in dynamic scenarios such as gameplay Fig. 1. The design integrates a hybrid 1D-CNN for efficient feature extraction and Bi-LSTM for temporal analysis, with a computational complexity of O(N · F + N · H), ensuring real-time capability. Validation through ROC curves, alongside F1-scores and precision-recall metrics ranging from 0.98 to 0.99, confirms the system's reliability. Unlike existing methods, this framework investigates the robustness of mm-wave radar to function independently of environmental factors like lighting or clothing, making it scalable for applications in healthcare, human-computer interaction, and educational settings. These findings establish mm-wave radar as a transformative tool for emotion recognition, offering enhanced comfort, privacy, and adaptability. | - |
| dc.language.iso | eng | - |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
| dc.subject.mesh | Computer interaction | - |
| dc.subject.mesh | Deep learning | - |
| dc.subject.mesh | Emotion recognition | - |
| dc.subject.mesh | Health informations | - |
| dc.subject.mesh | Heart-rate | - |
| dc.subject.mesh | Millimeter wave sensing | - |
| dc.subject.mesh | Millimeter-wave radar | - |
| dc.subject.mesh | Millimetre-wave radar | - |
| dc.subject.mesh | Mm waves | - |
| dc.subject.mesh | Wave radars | - |
| dc.title | Mm-HrtEMO: Non-Invasive Emotion Recognition via Heart Rate Using mm-Wave Sensing in Diverse Scenarios | - |
| dc.type | Article | - |
| dc.citation.title | IEEE Journal of Biomedical and Health Informatics | - |
| dc.identifier.bibliographicCitation | IEEE Journal of Biomedical and Health Informatics | - |
| dc.identifier.doi | 10.1109/jbhi.2024.3522316 | - |
| dc.identifier.scopusid | 2-s2.0-85213956184 | - |
| dc.identifier.url | http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020 | - |
| dc.subject.keyword | Deep Learning | - |
| dc.subject.keyword | Emotion Recognition | - |
| dc.subject.keyword | Health Information | - |
| dc.subject.keyword | Human-Computer Interaction | - |
| dc.subject.keyword | Millimeter Wave Radar | - |
| dc.type.other | Article | - |
| dc.identifier.pissn | 21682194 | - |
| dc.description.isoa | false | - |
| dc.subject.subarea | Computer Science Applications | - |
| dc.subject.subarea | Health Informatics | - |
| dc.subject.subarea | Electrical and Electronic Engineering | - |
| dc.subject.subarea | Health Information Management | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.