SCOPUS
0Citation Export
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | JAEHUN BAEK | - |
| dc.contributor.author | 김승원 | - |
| dc.contributor.author | 신동욱 | - |
| dc.date.issued | 2022-12 | - |
| dc.identifier.issn | 1226-9433 | - |
| dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/38011 | - |
| dc.identifier.uri | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002907947 | - |
| dc.description.abstract | In this report, we apply an anomaly detection algorithm to a mobile oral health care application. In particular, we have investigated one class YOLOv3 as an anomaly detec- tion model to classify pictures of mouths which will be used as inputs in the following machine learning model. We have achieved outstanding performances by proposing appropriate anno- tation strategies for our data sets and modifying the loss function. Moreover, the model can classify not only oral and non-oral pictures but also output preprocessed pictures that only con- tain the area around the lips by using the predicted bounding box. Thus, the model performs prediction and preprocessing simultaneously. | - |
| dc.language.iso | Eng | - |
| dc.publisher | 한국산업응용수학회 | - |
| dc.title | ANOMALY DETECTION FOR AN ORAL HEALTH CARE APPLICATION USING ONE CLASS YOLOV3 | - |
| dc.title.alternative | ANOMALY DETECTION FOR AN ORAL HEALTH CARE APPLICATION USING ONE CLASS YOLOV3 | - |
| dc.type | Article | - |
| dc.citation.endPage | 322 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 310 | - |
| dc.citation.title | Journal of the Korean Society for Industrial and Applied Mathematics | - |
| dc.citation.volume | 26 | - |
| dc.identifier.bibliographicCitation | Journal of the Korean Society for Industrial and Applied Mathematics, Vol.26 No.4, pp.310-322 | - |
| dc.subject.keyword | anomaly detection | - |
| dc.subject.keyword | object detection | - |
| dc.subject.keyword | YOLO. | - |
| dc.type.other | Article | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.