Ajou University repository

시나리오 데이터베이스와 생성형 모델을 이용한 상세 시나리오의 파라미터 선정과 선행차량 추종 및 끼어들기 시나리오 생성으로의 적용
  • 정선암 ;
  • 이세민 ;
  • 정영훈 ;
  • 김승환 ;
  • 송봉섭
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.author정선암-
dc.contributor.author이세민-
dc.contributor.author정영훈-
dc.contributor.author김승환-
dc.contributor.author송봉섭-
dc.date.issued2024-03-
dc.identifier.issn1225-6382-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/37908-
dc.identifier.urihttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003060015-
dc.description.abstractThe selection method of concrete scenarios based on scenario database and generative models is proposed in this paper. Two sampling methods are used in selecting appropriate parameters along a performance measure. First, the parameter space is extracted from scenario DB, and a set of parameters are selected via random sampling. Once the set of concrete scenarios are simulated, their distribution is analyzed with respect to a specific measure. The second method is based on parameter generative models. Simulated scenarios are used to train a surrogate model, which is a multi-layer perceptron model. Then, a generative model is designed to search for the desired parameter based on the surrogate model. Thus, the second one can be used to compensate for the imbalance in randomly sampled concrete scenarios. Finally, the proposed selection method is more efficient than random sampling from the viewpoint of the distribution of two different measures.-
dc.language.isoKor-
dc.publisher한국자동차공학회-
dc.title시나리오 데이터베이스와 생성형 모델을 이용한 상세 시나리오의 파라미터 선정과 선행차량 추종 및 끼어들기 시나리오 생성으로의 적용-
dc.title.alternativeParameter Selection of Safety- Critical Scenari os Based on Scenario Database and Generative Models and Its Application to Generation of Car-Following and Cut- in Scenarios-
dc.typeArticle-
dc.citation.endPage318-
dc.citation.number3-
dc.citation.startPage309-
dc.citation.title한국자동차공학회 논문집-
dc.citation.volume32-
dc.identifier.bibliographicCitation한국자동차공학회 논문집, Vol.32 No.3, pp.309-318-
dc.subject.keyword상세 시나리오-
dc.subject.keyword파라미터 공간-
dc.subject.keyword대리 모델-
dc.subject.keyword경사 하강법-
dc.subject.keyword생성형 모델-
dc.subject.keyword다층 퍼셉트론-
dc.subject.keyword자율주행 시나리오-
dc.subject.keywordConcrete scenario-
dc.subject.keywordParameter space-
dc.subject.keywordSurrogate model-
dc.subject.keywordGradient descent-
dc.subject.keywordGenerative model-
dc.subject.keywordMulti-layer perceptron-
dc.subject.keywordAutonomous driving scenario-
dc.type.otherArticle-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

SONG, BONGSOB Image
SONG, BONGSOB송봉섭
Department of Mechanical EngineeringDepartment of Mobility Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.