Ajou University repository

다채널 라이다의 주행 및 가상 데이터셋에 대한 딥러닝 기반 차량 검출 알고리즘의 학습 및 성능 비교 연구
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.author김윤범-
dc.contributor.author이태현-
dc.contributor.author송봉섭-
dc.date.issued2021-12-
dc.identifier.issn1225-6382-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/37570-
dc.identifier.urihttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002780727-
dc.description.abstractIn this paper, the training method used in a lidar-based, object detection algorithm is applied to different types of datasets, i.e., experimental driving data and virtual simulation data. Then, their performances are compared with respect to different key performance indexes(KPIs). Among many object detection methods introduced in the literature, three distinguished networks that consider the representation of lidar cloud points are chosen to compare fine tuning and performance. While most open datasets reflect only safe driving situations, it is necessary to develop and validate the object detection algorithm in dangerous and critical situations. With the generation of a virtual simulation dataset, including unsafe scenarios, the performance of the object detection algorithms can improve when the fine-tuning method is applied, along with the virtual dataset.-
dc.language.isoKor-
dc.publisher한국자동차공학회-
dc.title다채널 라이다의 주행 및 가상 데이터셋에 대한 딥러닝 기반 차량 검출 알고리즘의 학습 및 성능 비교 연구-
dc.title.alternativeTraining and Performance Analysis of Vehicle Detection Neural Networks to Field Test and Simulation Datasets of Multi-channel Lidar-
dc.typeArticle-
dc.citation.endPage1132-
dc.citation.number12-
dc.citation.startPage1123-
dc.citation.title한국자동차공학회 논문집-
dc.citation.volume29-
dc.identifier.bibliographicCitation한국자동차공학회 논문집, Vol.29 No.12, pp.1123-1132-
dc.subject.keyword차량 검출-
dc.subject.keyword심층 학습-
dc.subject.keyword3차원 라이다-
dc.subject.keyword세부 튜닝-
dc.subject.keyword센서 시뮬레이터-
dc.subject.keyword가상 데이터-
dc.subject.keywordVehicle detection-
dc.subject.keywordDeep learning-
dc.subject.keyword3D LiDAR-
dc.subject.keywordFine tuning-
dc.subject.keywordSensor simulator-
dc.subject.keywordVirtual data-
dc.type.otherArticle-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

SONG, BONGSOB Image
SONG, BONGSOB송봉섭
Department of Mechanical EngineeringDepartment of Mobility Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.