본 연구에서는 최근 활발하게 활용되고 있는 머신러닝 기법을 교통분야에 적용하여 효율적인 돌발상황 검지 알고리즘을 개발하는 것을 목적으로 하였다. 미시교통시뮬레이션 모형을 통하여 대상지의 네트워크를 구축하였고 돌발상황에 영향을 줄 것으로 예상되는 변수의 여러 조합을 통해 시나리오를 설정하여 가상의 돌발상황 데이터를 수집하였다. 다음으로 대표적인 돌발상황 검지 알고리즘인 McMaster 알고리즘과 본 연구에서 개발한 나이브 베이즈 분류기 를구현하여 비교·평가하였다. 비교 결과, 나이브 베이즈 분류기가 McMaster 알고리즘에 비해 돌발상황 검지 간격에 따른 부정적인 영향이 적었고 더 우수한 검지율을 보였다. 하지만 검지율이 증가하는 만큼 오검지율 또한 증가하는 것을 확인할 수 있었다. McMaster 알고리즘은 4주기를 통해 검지가 가능하지만 나이브 베이즈 분류기는 1주기(30초)만으로 돌발상황을 판단할 수있다. 본 연구를 통해 개발한 나이브 베이즈 분류기가 효율적으로 돌발을 파악할 수 있다는것을 확인할 수 있었다.