Ajou University repository

Poster: Dynamic Clustered Federated Framework for Multi-domain Network Anomaly Detection
Citations

SCOPUS

11

Citation Export

DC Field Value Language
dc.contributor.authorZhang, Chunjiong-
dc.contributor.authorRoh, Byeong Hee-
dc.contributor.authorShan, Gaoyang-
dc.date.issued2023-12-05-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36994-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85183588937&origin=inward-
dc.description.abstractFederated learning as a distributed category yields sub-optimal performance for the presence of Non-iid in multi-domain data. To this end, we proposes a novel clustered federated framework for unsupervised multi-domain network anomaly detection, which implements dynamic clustered federated based on the data distribution of different domain so that each edge user learns the domain-optimized inference model. Compared to baseline, the proposed method enables users to obtain domain-optimal performance.-
dc.description.sponsorshipThis research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2023-2018-0-01431) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation).-
dc.language.isoeng-
dc.publisherAssociation for Computing Machinery, Inc-
dc.subject.meshClusterings-
dc.subject.meshData distribution-
dc.subject.meshDifferent domains-
dc.subject.meshFederated learning-
dc.subject.meshInference models-
dc.subject.meshLearn+-
dc.subject.meshMulti-domains-
dc.subject.meshMultidomain networks-
dc.subject.meshNetwork anomaly detection-
dc.subject.meshSub-optimal performance-
dc.titlePoster: Dynamic Clustered Federated Framework for Multi-domain Network Anomaly Detection-
dc.typeConference-
dc.citation.conferenceDate2023.12.5. ~ 2023.12.8.-
dc.citation.conferenceName19th International Conference on emerging Networking EXperiments and Technologies, CoNEXT Companion 2023-
dc.citation.editionCoNEXT Companion 2023 - Companion of the 19th International Conference on emerging Networking EXperiments and Technologies-
dc.citation.endPage72-
dc.citation.startPage71-
dc.citation.titleCoNEXT Companion 2023 - Companion of the 19th International Conference on emerging Networking EXperiments and Technologies-
dc.identifier.bibliographicCitationCoNEXT Companion 2023 - Companion of the 19th International Conference on emerging Networking EXperiments and Technologies, pp.71-72-
dc.identifier.doi10.1145/3624354.3630086-
dc.identifier.scopusid2-s2.0-85183588937-
dc.identifier.urlhttp://dl.acm.org/citation.cfm?id=3624354-
dc.subject.keywordclustering-
dc.subject.keywordfederated learning-
dc.subject.keywordmulti-domain-
dc.subject.keywordnetwork anomaly detection-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaComputer Science Applications-
dc.subject.subareaHardware and Architecture-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Roh, Byeong-hee Image
Roh, Byeong-hee노병희
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.