Citation Export
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nam, Jounghoon | - |
dc.contributor.author | Noorfatima, Nadya | - |
dc.contributor.author | Jung, Jaesung | - |
dc.date.issued | 2023-01-01 | - |
dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/36975 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85174688287&origin=inward | - |
dc.description.abstract | This study develops a load-shifting scheduling algorithm for demand response to improve the profit of industrial customers. The objective function is determined to maximize the expected profit of demand response (DR) participation to reflect the market structure. For this, it converts the profit of the economic DR by using the bidding probability. Moreover, it derives the DR schedules of each manufacturing process separately and organizes constraints to improve the participation amount and minimize damage to each manufacturing machine. The proposed algorithm utilizes a genetic algorithm (GA) to derive an optimal DR solution. The actual market data and power consumption coefficient of South Korea are used to simulate the proposed algorithm. | - |
dc.language.iso | eng | - |
dc.publisher | IEEE Computer Society | - |
dc.subject.mesh | Bidding probability | - |
dc.subject.mesh | Demand response | - |
dc.subject.mesh | Expected profits | - |
dc.subject.mesh | Flexibility potential | - |
dc.subject.mesh | Industrial customer | - |
dc.subject.mesh | Load shifting | - |
dc.subject.mesh | Manufacturing process | - |
dc.subject.mesh | Market structures | - |
dc.subject.mesh | Objective functions | - |
dc.subject.mesh | Stochastic scheduling | - |
dc.title | Load-Shifting Scheduling based on Manufacturing Process for Demand Response with Bidding Probability | - |
dc.type | Conference | - |
dc.citation.conferenceDate | 2023.7.16. ~ 2023.7.20. | - |
dc.citation.conferenceName | 2023 IEEE Power and Energy Society General Meeting, PESGM 2023 | - |
dc.citation.edition | 2023 IEEE Power and Energy Society General Meeting, PESGM 2023 | - |
dc.citation.title | IEEE Power and Energy Society General Meeting | - |
dc.citation.volume | 2023-July | - |
dc.identifier.bibliographicCitation | IEEE Power and Energy Society General Meeting, Vol.2023-July | - |
dc.identifier.doi | 10.1109/pesgm52003.2023.10253343 | - |
dc.identifier.scopusid | 2-s2.0-85174688287 | - |
dc.identifier.url | http://ieeexplore.ieee.org/xpl/conferences.jsp | - |
dc.subject.keyword | bidding probability | - |
dc.subject.keyword | demand response | - |
dc.subject.keyword | flexibility potential | - |
dc.subject.keyword | genetic algorithm | - |
dc.subject.keyword | stochastic scheduling | - |
dc.type.other | Conference Paper | - |
dc.description.isoa | false | - |
dc.subject.subarea | Energy Engineering and Power Technology | - |
dc.subject.subarea | Nuclear Energy and Engineering | - |
dc.subject.subarea | Renewable Energy, Sustainability and the Environment | - |
dc.subject.subarea | Electrical and Electronic Engineering | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.