Ajou University repository

Load-Shifting Scheduling based on Manufacturing Process for Demand Response with Bidding Probability
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorNam, Jounghoon-
dc.contributor.authorNoorfatima, Nadya-
dc.contributor.authorJung, Jaesung-
dc.date.issued2023-01-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36975-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85174688287&origin=inward-
dc.description.abstractThis study develops a load-shifting scheduling algorithm for demand response to improve the profit of industrial customers. The objective function is determined to maximize the expected profit of demand response (DR) participation to reflect the market structure. For this, it converts the profit of the economic DR by using the bidding probability. Moreover, it derives the DR schedules of each manufacturing process separately and organizes constraints to improve the participation amount and minimize damage to each manufacturing machine. The proposed algorithm utilizes a genetic algorithm (GA) to derive an optimal DR solution. The actual market data and power consumption coefficient of South Korea are used to simulate the proposed algorithm.-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.meshBidding probability-
dc.subject.meshDemand response-
dc.subject.meshExpected profits-
dc.subject.meshFlexibility potential-
dc.subject.meshIndustrial customer-
dc.subject.meshLoad shifting-
dc.subject.meshManufacturing process-
dc.subject.meshMarket structures-
dc.subject.meshObjective functions-
dc.subject.meshStochastic scheduling-
dc.titleLoad-Shifting Scheduling based on Manufacturing Process for Demand Response with Bidding Probability-
dc.typeConference-
dc.citation.conferenceDate2023.7.16. ~ 2023.7.20.-
dc.citation.conferenceName2023 IEEE Power and Energy Society General Meeting, PESGM 2023-
dc.citation.edition2023 IEEE Power and Energy Society General Meeting, PESGM 2023-
dc.citation.titleIEEE Power and Energy Society General Meeting-
dc.citation.volume2023-July-
dc.identifier.bibliographicCitationIEEE Power and Energy Society General Meeting, Vol.2023-July-
dc.identifier.doi10.1109/pesgm52003.2023.10253343-
dc.identifier.scopusid2-s2.0-85174688287-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/conferences.jsp-
dc.subject.keywordbidding probability-
dc.subject.keyworddemand response-
dc.subject.keywordflexibility potential-
dc.subject.keywordgenetic algorithm-
dc.subject.keywordstochastic scheduling-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaEnergy Engineering and Power Technology-
dc.subject.subareaNuclear Energy and Engineering-
dc.subject.subareaRenewable Energy, Sustainability and the Environment-
dc.subject.subareaElectrical and Electronic Engineering-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Jaesung  Image
Jung, Jaesung 정재성
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.