Ajou University repository

Improving the Efficiency of CMOS Image Sensors through In-Sensor Selective Attention
  • Zhang, Tianyi ;
  • Kasichainula, Kishore ;
  • Jee, Dong Woo ;
  • Yeo, Injune ;
  • Zhuo, Yaoxin ;
  • Li, Baoxin ;
  • Seo, Jae Sun ;
  • Cao, Yu
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorZhang, Tianyi-
dc.contributor.authorKasichainula, Kishore-
dc.contributor.authorJee, Dong Woo-
dc.contributor.authorYeo, Injune-
dc.contributor.authorZhuo, Yaoxin-
dc.contributor.authorLi, Baoxin-
dc.contributor.authorSeo, Jae Sun-
dc.contributor.authorCao, Yu-
dc.date.issued2023-01-01-
dc.identifier.issn0271-4310-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36972-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85167658524&origin=inward-
dc.description.abstractInspired by the selective attention mechanism in human vision, we propose to introduce a saliency-based processing step in the CMOS image sensor, to continuously select pixels corresponding to salient objects and feedback such information to the sensor, instead of blindly passing all pixels to the sensor output. To minimize the overhead of saliency detection in this feedback loop, we propose two techniques: (1) saliency detection with low-precision, down-sampled grayscale images, and (2) Optimization of the loss function and model structure. Finally, we pad the minimum number of pixels around the selected pixels to maintain the accuracy of object detection (OD). Our method is experimented with two types of OD algorithms on three representative datasets. At the similar OD accuracy with the full image, our proposed selective feedback method successfully achieves 70.5% reduction in the volume of output pixels for BDD100K, which translates to 4.3× and 3.4× reduction in power consumption and latency, respectively.-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.mesh% reductions-
dc.subject.meshCMOS image sensor-
dc.subject.meshHuman vision-
dc.subject.meshLatency-
dc.subject.meshObjects detection-
dc.subject.meshProcessing steps-
dc.subject.meshSaliency detection-
dc.subject.meshSalient objects-
dc.subject.meshSelective attention-
dc.subject.meshSelective attention mechanism-
dc.titleImproving the Efficiency of CMOS Image Sensors through In-Sensor Selective Attention-
dc.typeConference-
dc.citation.conferenceDate2023.5.21. ~ 2023.5.25.-
dc.citation.conferenceName56th IEEE International Symposium on Circuits and Systems, ISCAS 2023-
dc.citation.editionISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings-
dc.citation.titleProceedings - IEEE International Symposium on Circuits and Systems-
dc.citation.volume2023-May-
dc.identifier.bibliographicCitationProceedings - IEEE International Symposium on Circuits and Systems, Vol.2023-May-
dc.identifier.doi10.1109/iscas46773.2023.10181835-
dc.identifier.scopusid2-s2.0-85167658524-
dc.subject.keywordimage sensor-
dc.subject.keywordlatency-
dc.subject.keywordobject detection-
dc.subject.keywordpower consumption-
dc.subject.keywordsaliency detection-
dc.subject.keywordselective attention-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaElectrical and Electronic Engineering-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

 Jee, Dong Woo Image
Jee, Dong Woo지동우
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.