Ajou University repository

Poster: Coordinated Multi-Agent Reinforcement Learning for Unmanned Aerial Vehicle Swarms in Autonomous Mobile Access Applications
  • Park, Chanyoung ;
  • Lee, Haemin ;
  • Yun, Won Joon ;
  • Park, Soohyun ;
  • Jung, Soyi ;
  • Kim, Joongheon
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorPark, Chanyoung-
dc.contributor.authorLee, Haemin-
dc.contributor.authorYun, Won Joon-
dc.contributor.authorPark, Soohyun-
dc.contributor.authorJung, Soyi-
dc.contributor.authorKim, Joongheon-
dc.date.issued2023-01-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36952-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85175093126&origin=inward-
dc.description.abstractThis paper proposes a novel centralized training and distributed execution (CTDE)-based multi-agent deep reinforcement learning (MADRL) method for multiple unmanned aerial vehicles (UAVs) control in autonomous mobile access applications. For the purpose, a single neural network is utilized in centralized training for cooperation among multiple agents while maximizing the total quality of service (QoS) in mobile access applications.-
dc.description.sponsorshipAcknowledgments. This research was funded by National Research Foundation of Korea (2022R1A2C2004869). Chanyoung Park and Haemin Lee equally contributed to this work (first authors). Soohyun Park is a corresponding author (soohyun828@korea.ac.kr).-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshAccess applications-
dc.subject.meshAerial vehicle-
dc.subject.meshAutonomous mobilities-
dc.subject.meshMobile access-
dc.subject.meshMulti agent-
dc.subject.meshMulti agent deep reinforcement learning-
dc.subject.meshNon terrestrial network-
dc.subject.meshReinforcement learnings-
dc.subject.meshTerrestrial networks-
dc.subject.meshUnmanned aerial vehicle-
dc.titlePoster: Coordinated Multi-Agent Reinforcement Learning for Unmanned Aerial Vehicle Swarms in Autonomous Mobile Access Applications-
dc.typeConference-
dc.citation.conferenceDate2023.7.18. ~ 2023.7.21.-
dc.citation.conferenceName43rd IEEE International Conference on Distributed Computing Systems, ICDCS 2023-
dc.citation.editionProceedings - 2023 IEEE 43rd International Conference on Distributed Computing Systems, ICDCS 2023-
dc.citation.endPage1044-
dc.citation.startPage1043-
dc.citation.titleProceedings - International Conference on Distributed Computing Systems-
dc.citation.volume2023-July-
dc.identifier.bibliographicCitationProceedings - International Conference on Distributed Computing Systems, Vol.2023-July, pp.1043-1044-
dc.identifier.doi10.1109/icdcs57875.2023.00126-
dc.identifier.scopusid2-s2.0-85175093126-
dc.subject.keywordAutonomous mobility-
dc.subject.keywordMulti agent deep reinforcement learning (MADRL)-
dc.subject.keywordNon Terrestrial Network (NTN)-
dc.subject.keywordUnmanned aerial vehicle (UAV)-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaSoftware-
dc.subject.subareaHardware and Architecture-
dc.subject.subareaComputer Networks and Communications-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Soyi Image
Jung, Soyi정소이
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.