Ajou University repository

Improving Multilayer-Perceptron(MLP)-based Network Anomaly Detection with Birch Clustering on CICIDS-2017 Datasetoa mark
  • Yin, Yuhua ;
  • Jang-Jaccard, Julian ;
  • Sabrina, Fariza ;
  • Kwak, Jin
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorYin, Yuhua-
dc.contributor.authorJang-Jaccard, Julian-
dc.contributor.authorSabrina, Fariza-
dc.contributor.authorKwak, Jin-
dc.date.issued2023-01-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36941-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85164708592&origin=inward-
dc.description.abstractThe network intrusion threats are increasingly severe with the application of computer supported coorperative work. Machine learning algorithms have been widely used in intrusion detection systems, including Multi-layer Perceptron (MLP). In this study, we proposed a two-stage model that combines the Birch clustering algorithm and MLP classifier to improve the performance of network anomaly multi-classification. In our proposed method, we first apply Birch or K-means as an unsupervised clustering algorithm to the CICIDS-2017 dataset to pre-group the data. The generated pseudo-label is then added as an additional feature to the training of the MLP-based classifier. The experimental results show that using Birch and K-Means clustering for data pre-grouping can improve intrusion detection system performance. Our method can achieve 99.73% accuracy in multi-classification using Birch clustering, which is better than similar researches using a stand-alone MLP model.-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshAnomaly detection-
dc.subject.meshCICIDS2017 dataset-
dc.subject.meshClusterings-
dc.subject.meshIntrusion Detection Systems-
dc.subject.meshIntrusion-Detection-
dc.subject.meshMachine learning algorithms-
dc.subject.meshMulti-classification-
dc.subject.meshMultilayers perceptrons-
dc.subject.meshNetwork anomaly detection-
dc.subject.meshNetwork intrusions-
dc.titleImproving Multilayer-Perceptron(MLP)-based Network Anomaly Detection with Birch Clustering on CICIDS-2017 Dataset-
dc.typeConference-
dc.citation.conferenceDate2023.5.24. ~ 2023.5.26.-
dc.citation.conferenceName26th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2023-
dc.citation.editionProceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2023-
dc.citation.endPage431-
dc.citation.startPage423-
dc.citation.titleProceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2023-
dc.identifier.bibliographicCitationProceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2023, pp.423-431-
dc.identifier.doi10.1109/cscwd57460.2023.10152640-
dc.identifier.scopusid2-s2.0-85164708592-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10152543-
dc.subject.keywordAnomaly Detection-
dc.subject.keywordCICIDS2017 dataset-
dc.subject.keywordClustering Algorithm-
dc.subject.keywordIntrusion Detection-
dc.subject.keywordMulti-classification-
dc.subject.keywordMultilayer Perceptron-
dc.type.otherConference Paper-
dc.description.isoatrue-
dc.subject.subareaArtificial Intelligence-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaComputer Science Applications-
dc.subject.subareaHardware and Architecture-
dc.subject.subareaInformation Systems and Management-
dc.subject.subareaSafety, Risk, Reliability and Quality-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

KWAK, JIN Image
KWAK, JIN곽진
Department of Cyber Security
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.