Citation Export
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Qasem Mohammed, Sadeq Ali | - |
dc.contributor.author | Ali Gamal Al-Kaf, Hasan | - |
dc.contributor.author | Lee, Kyo Beum | - |
dc.date.issued | 2023-01-01 | - |
dc.identifier.uri | https://aurora.ajou.ac.kr/handle/2018.oak/36935 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85182922946&origin=inward | - |
dc.description.abstract | This research work introduces an enhanced sensorless-based iterative learning control (ILC) method to elevate the steady-state and dynamic performance of permanent magnet synchronous motors (PMSMs). Unlike traditional sensorless control methods, the proposed method combines feedback control terms and ILC terms to minimize state errors and improve dynamic performance by utilizing recorded data from previous iterations. Precise knowledge of the PMSM parameters is not required, making the control approach less sensitive to system perturbation. Comparative simulation analyses using the PSIM simulation tool are carried out to validate the practicability of the proposed control approach both in transient and steady-state conditions. | - |
dc.description.sponsorship | This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20225500000110). | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.subject.mesh | Control approach | - |
dc.subject.mesh | Control methods | - |
dc.subject.mesh | Dynamic performance | - |
dc.subject.mesh | Iterative learning control | - |
dc.subject.mesh | Motor parameters | - |
dc.subject.mesh | Permanent Magnet Synchronous Motor | - |
dc.subject.mesh | Sensorless | - |
dc.subject.mesh | Sensorless control method | - |
dc.subject.mesh | State errors | - |
dc.subject.mesh | Steady-state and dynamic performance | - |
dc.title | Refined Sensorless-Based ILC Approach for Permanent Magnet Synchronous Motors | - |
dc.type | Conference | - |
dc.citation.conferenceDate | 2023.10.23. ~ 2023.10.24. | - |
dc.citation.conferenceName | 6th IEEE Conference on Energy Conversion, CENCON 2023 | - |
dc.citation.edition | 2023 IEEE Conference on Energy Conversion, CENCON 2023 | - |
dc.citation.endPage | 149 | - |
dc.citation.startPage | 144 | - |
dc.citation.title | 2023 IEEE Conference on Energy Conversion, CENCON 2023 | - |
dc.identifier.bibliographicCitation | 2023 IEEE Conference on Energy Conversion, CENCON 2023, pp.144-149 | - |
dc.identifier.doi | 10.1109/cencon58932.2023.10369122 | - |
dc.identifier.scopusid | 2-s2.0-85182922946 | - |
dc.identifier.url | http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10368382 | - |
dc.subject.keyword | Iterative learning control | - |
dc.subject.keyword | permanent magnet synchronous motors | - |
dc.subject.keyword | sensorless control | - |
dc.type.other | Conference Paper | - |
dc.description.isoa | false | - |
dc.subject.subarea | Energy Engineering and Power Technology | - |
dc.subject.subarea | Renewable Energy, Sustainability and the Environment | - |
dc.subject.subarea | Automotive Engineering | - |
dc.subject.subarea | Electrical and Electronic Engineering | - |
dc.subject.subarea | Mechanical Engineering | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.