Ajou University repository

Outlier-aware Cross-Market Product Recommendation
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorKang, Hyeoung Guk-
dc.contributor.authorLee, Donghoon-
dc.contributor.authorCho, Hyunsouk-
dc.date.issued2023-01-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36928-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85151534284&origin=inward-
dc.description.abstractCross Market Recommendation (CMR) is a method of recommending in a resource-scarce market by using modelagnostic meta-learning. Generally, more interactions give more clues to identify the user preferences, so CF performs better with outlier users (who have more item interactions) than normal users. However, constructing each adapt batch set (support set) and evaluation batch set (query set) for meta-learning in CMR causes the model to underfit in outlier users. We aim at this phenomenon and propose a new hybrid strategy to solve this problem. By simply combining MAML and CF to target general users and outliers, respectively. We also validate our method with the benchmark dataset and the proposed model shows better performance compared to the original model.-
dc.description.sponsorshipVII. ACKNOWLEDGEMENT This research was supported by the MIST(Ministry of Science, ICT), Korea, under the National Program for Excellence in SW), supervised by the IITP (Institute of Information & communications Technology Planning & Evaluation) in 2023 (2022-0-01077).-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshBenchmark datasets-
dc.subject.meshHybrid strategies-
dc.subject.meshMarket products-
dc.subject.meshMarket recommendations-
dc.subject.meshMetalearning-
dc.subject.meshOriginal model-
dc.subject.meshPerformance-
dc.subject.meshProduct recommendation-
dc.subject.meshRecommendation, outlier, meta learning-
dc.subject.meshUser's preferences-
dc.titleOutlier-aware Cross-Market Product Recommendation-
dc.typeConference-
dc.citation.conferenceDate2023.2.13. ~ 2023.2.16.-
dc.citation.conferenceName2023 IEEE International Conference on Big Data and Smart Computing, BigComp 2023-
dc.citation.editionProceedings - 2023 IEEE International Conference on Big Data and Smart Computing, BigComp 2023-
dc.citation.endPage123-
dc.citation.startPage120-
dc.citation.titleProceedings - 2023 IEEE International Conference on Big Data and Smart Computing, BigComp 2023-
dc.identifier.bibliographicCitationProceedings - 2023 IEEE International Conference on Big Data and Smart Computing, BigComp 2023, pp.120-123-
dc.identifier.doi10.1109/bigcomp57234.2023.00027-
dc.identifier.scopusid2-s2.0-85151534284-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10066534-
dc.subject.keywordrecommendation, outlier, meta learning-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaArtificial Intelligence-
dc.subject.subareaComputer Science Applications-
dc.subject.subareaComputer Vision and Pattern Recognition-
dc.subject.subareaInformation Systems-
dc.subject.subareaInformation Systems and Management-
dc.subject.subareaStatistics, Probability and Uncertainty-
dc.subject.subareaHealth Informatics-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Cho, Hyunsouk Image
Cho, Hyunsouk조현석
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.