Ajou University repository

GAN Inversion with Semantic Segmentation Map for Image Editing
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorShin, Chang Jong-
dc.contributor.authorHeo, Yong Seok-
dc.date.issued2022-01-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36813-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85143256715&origin=inward-
dc.description.abstractIn this paper, we propose a framework to perform Generative Adversarial Network (GAN) inversion using semantic segmentation map to invert input image into the GAN latent space. Generally, it is still difficult to invert semantic information of input image into GAN latent space. In particular, conventional GAN inversion methods usually suffer from inverting accurate semantic information such as shape of glasses and hairstyle. To this end, we propose a framework that uses the semantic segmentation map of the real image to guide the latent space corresponding to feature map with coarse resolution in the Style-GANv2. Experimental results show that our proposed method generates more accurate images and is possible of detailed editing of input images with a variety of semantic information compared with previous GAN inversion methods.-
dc.description.sponsorshipACKNOWLEDGEMENT This work has been supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2022-2018-0-01424) supervised by the IITP(Institute for Information communications Technology Promotion).-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.meshGenerative adversarial network inversion-
dc.subject.meshImage editing-
dc.subject.meshImage manipulation-
dc.subject.meshInput image-
dc.subject.meshInversion methods-
dc.subject.meshNetwork inversion-
dc.subject.meshReal images-
dc.subject.meshSegmentation map-
dc.subject.meshSemantic segmentation-
dc.subject.meshSemantics Information-
dc.titleGAN Inversion with Semantic Segmentation Map for Image Editing-
dc.typeConference-
dc.citation.conferenceDate2022.10.19. ~ 2022.10.21.-
dc.citation.conferenceName13th International Conference on Information and Communication Technology Convergence, ICTC 2022-
dc.citation.editionICTC 2022 - 13th International Conference on Information and Communication Technology Convergence: Accelerating Digital Transformation with ICT Innovation-
dc.citation.endPage931-
dc.citation.startPage927-
dc.citation.titleInternational Conference on ICT Convergence-
dc.citation.volume2022-October-
dc.identifier.bibliographicCitationInternational Conference on ICT Convergence, Vol.2022-October, pp.927-931-
dc.identifier.doi10.1109/ictc55196.2022.9952548-
dc.identifier.scopusid2-s2.0-85143256715-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/conferences.jsp-
dc.subject.keywordGAN inversion-
dc.subject.keywordimage editing-
dc.subject.keywordimage manipulation-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaInformation Systems-
dc.subject.subareaComputer Networks and Communications-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Heo,Yong Seok  Image
Heo,Yong Seok 허용석
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.