Ajou University repository

Towards Proper Contrastive Self-Supervised Learning Strategies for Music Audio Representationoa mark
Citations

SCOPUS

6

Citation Export

DC Field Value Language
dc.contributor.authorChoi, Jeong-
dc.contributor.authorJang, Seongwon-
dc.contributor.authorCho, Hyunsouk-
dc.contributor.authorChung, Sehee-
dc.date.issued2022-01-01-
dc.identifier.issn1945-788X-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36808-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137677423&origin=inward-
dc.description.abstractThe common research goal of self-supervised learning is to extract a general representation which an arbitrary downstream task would benefit from. In this work, we investigate music audio representation learned from different contrastive self-supervised learning schemes and empirically evaluate the embedded vectors on various music information retrieval (MIR) tasks where different levels of the music perception are concerned. We analyze the results to discuss the proper direction of contrastive learning strategies for different MIR tasks. We show that these representations convey a comprehensive information about the auditory characteristics of music in general, although each of the self-supervision strategies has its own effectiveness in certain aspect of information.-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.meshAudio representation-
dc.subject.meshContrastive learning-
dc.subject.meshDown-stream-
dc.subject.meshLearning schemes-
dc.subject.meshLearning strategy-
dc.subject.meshMusic audio representation-
dc.subject.meshMusic information retrieval-
dc.subject.meshMusic perception-
dc.subject.meshResearch goals-
dc.subject.meshSelf-supervised learning-
dc.titleTowards Proper Contrastive Self-Supervised Learning Strategies for Music Audio Representation-
dc.typeConference-
dc.citation.conferenceDate2022.07.18.~2022.07.22.-
dc.citation.conferenceName2022 IEEE International Conference on Multimedia and Expo, ICME 2022-
dc.citation.editionICME 2022 - IEEE International Conference on Multimedia and Expo 2022, Proceedings-
dc.citation.titleProceedings - IEEE International Conference on Multimedia and Expo-
dc.citation.volume2022-July-
dc.identifier.bibliographicCitationProceedings - IEEE International Conference on Multimedia and Expo, Vol.2022-July-
dc.identifier.doi10.1109/icme52920.2022.9859799-
dc.identifier.scopusid2-s2.0-85137677423-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/conferences.jsp-
dc.subject.keywordContrastive Learning-
dc.subject.keywordMusic Audio Representation-
dc.subject.keywordSelf-supervised Learning-
dc.type.otherConference Paper-
dc.identifier.pissn19457871-
dc.description.isoatrue-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaComputer Science Applications-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Cho, Hyunsouk Image
Cho, Hyunsouk조현석
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.