Ajou University repository

Visualization of deep reinforcement autonomous aerial mobility learning simulationsoa mark
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorLee, Gusang-
dc.contributor.authorYun, Won Joon-
dc.contributor.authorJung, Soyi-
dc.contributor.authorKim, Joongheon-
dc.contributor.authorKim, Jae Hyun-
dc.date.issued2021-05-10-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36708-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113332011&origin=inward-
dc.description.abstractThis demo abstract presents the visualization of deep reinforcement learning (DRL)-based autonomous aerial mobility simulations. In order to implement the software, Unity-RL is used and additional buildings are introduced for urban environment. On top of the implementation, DRL algorithms are used and we confirm it works well in terms of trajectory and 3D visualization.-
dc.description.sponsorshipACKNOWLEDGMENT This research is supported by National Research Foundation of Korea (2019R1A2C4070663 and 2019M3E4A1080391). S. Jung, J. Kim, and J.-H. Kim are corresponding authors.-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.mesh3D Visualization-
dc.subject.meshLearning simulation-
dc.subject.meshUrban environments-
dc.titleVisualization of deep reinforcement autonomous aerial mobility learning simulations-
dc.typeConference-
dc.citation.conferenceDate2021.5.9. ~ 2021.5.12.-
dc.citation.conferenceName2021 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021-
dc.citation.editionIEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021-
dc.citation.titleIEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021-
dc.identifier.bibliographicCitationIEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021-
dc.identifier.doi10.1109/infocomwkshps51825.2021.9484462-
dc.identifier.scopusid2-s2.0-85113332011-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9484327-
dc.type.otherConference Paper-
dc.description.isoatrue-
dc.subject.subareaArtificial Intelligence-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaHardware and Architecture-
dc.subject.subareaInformation Systems and Management-
dc.subject.subareaSafety, Risk, Reliability and Quality-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Soyi Image
Jung, Soyi정소이
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.