Ajou University repository

ComDia+: An interactive visual analytics system for comparing, diagnosing, and improving multiclass classifiers
Citations

SCOPUS

10

Citation Export

DC Field Value Language
dc.contributor.authorPark, Chanhee-
dc.contributor.authorLee, Jina-
dc.contributor.authorHan, Hyunwoo-
dc.contributor.authorLee, Kyungwon-
dc.date.issued2019-04-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36464-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070712079&origin=inward-
dc.description.abstractPerformance analysis is essential for improving classification models. However, existing performance analysis tools do not provide actionable insights such as the cause of misclassification. Machine learning practitioners face difficulties such as prioritizing model, looking over confusion between classes. In addition, existing performance analysis tools that provide feature-level analysis are difficult to apply to image classification problems. This study has been proposed to solve these difficulties. In this paper, we present an interactive visual analytics system for diagnosing the performance of multiclass classification models. Our system is able to compare multiple models, find weaknesses, and obtain actionable insights for improving models. Our visualization consists of three views for analyzing performance at the class, confusion, and instance levels. We demonstrate our system using MNIST handwritten digits data.-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.meshClassification models-
dc.subject.meshComparision-
dc.subject.meshConfusion analysis-
dc.subject.meshMisclassifications-
dc.subject.meshMulti-class classification-
dc.subject.meshMulti-class classifier-
dc.subject.meshPerformance analysis-
dc.subject.meshVisual analytics systems-
dc.titleComDia+: An interactive visual analytics system for comparing, diagnosing, and improving multiclass classifiers-
dc.typeConference-
dc.citation.conferenceDate2019.4.23. ~ 2019.4.26.-
dc.citation.conferenceName12th IEEE Pacific Visualization Symposium, PacificVis 2019-
dc.citation.editionProceedings - 2019 IEEE Pacific Visualization Symposium, PacificVis 2019-
dc.citation.endPage317-
dc.citation.startPage313-
dc.citation.titleIEEE Pacific Visualization Symposium-
dc.citation.volume2019-April-
dc.identifier.bibliographicCitationIEEE Pacific Visualization Symposium, Vol.2019-April, pp.313-317-
dc.identifier.doi10.1109/pacificvis.2019.00044-
dc.identifier.scopusid2-s2.0-85070712079-
dc.identifier.urlhttp://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=IEEE+Symposium+on+Pacific+Visualization+2013%2C+PacificVis+2013+-+Proceedings&x=21&y=13-
dc.subject.keywordClassification-
dc.subject.keywordConfusion analysis-
dc.subject.keywordModel comparision-
dc.subject.keywordPerformance analysis-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaComputer Graphics and Computer-Aided Design-
dc.subject.subareaComputer Vision and Pattern Recognition-
dc.subject.subareaHardware and Architecture-
dc.subject.subareaSoftware-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Lee, KyungWon Image
Lee, KyungWon이경원
Department of Digital Media
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.