Ajou University repository

Predicting the Damage of Distribution System by Strong Wind
  • Oh, Seongmun ;
  • Jung, Jaesung ;
  • Jufri, Fauzan Hanif ;
  • Choi, Min Hee
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorOh, Seongmun-
dc.contributor.authorJung, Jaesung-
dc.contributor.authorJufri, Fauzan Hanif-
dc.contributor.authorChoi, Min Hee-
dc.date.issued2019-05-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36458-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074948396&origin=inward-
dc.description.abstractThis paper presents the methodology to predict the strong wind-related damage in the distribution system. For this, weather data and distribution system failure data are collected from the Meteorological Administration and an electric power company in South Korea respectively. Then, these datasets are integrated to analyze a relationship between weather and equipment failures in the distribution system. The prediction model is developed based on a typical regression model using the highly-correlated weather parameters selected by Pearson correlation analysis. Furthermore, two models which called the divided and combined models are developed to enhance an accuracy of prediction based on the natural disaster standard. To verify the algorithm, the results of the developed model are compared with the basic regression model by using the actual data in the strong windy day.-
dc.description.sponsorshipACKNOWLEDGMENT This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172410100040).-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshDamage prediction-
dc.subject.meshDistribution systems-
dc.subject.meshElectric power company-
dc.subject.meshEquipment failures-
dc.subject.meshGrid resilience-
dc.subject.meshPearson correlation analysis-
dc.subject.meshStrong winds-
dc.subject.meshWeather parameters-
dc.titlePredicting the Damage of Distribution System by Strong Wind-
dc.typeConference-
dc.citation.conferenceDate2019.5.21. ~ 2019.5.24.-
dc.citation.conferenceName2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019-
dc.citation.edition2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019-
dc.citation.endPage3974-
dc.citation.startPage3970-
dc.citation.title2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019-
dc.identifier.bibliographicCitation2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019, pp.3970-3974-
dc.identifier.doi10.1109/isgt-asia.2019.8881415-
dc.identifier.scopusid2-s2.0-85074948396-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8864995-
dc.subject.keywordClimate change-
dc.subject.keywordDamage prediction-
dc.subject.keywordDistribution system-
dc.subject.keywordGrid resilience-
dc.subject.keywordStrong wind-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaArtificial Intelligence-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaEnergy Engineering and Power Technology-
dc.subject.subareaRenewable Energy, Sustainability and the Environment-
dc.subject.subareaElectrical and Electronic Engineering-
dc.subject.subareaControl and Optimization-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Jaesung  Image
Jung, Jaesung 정재성
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.