Ajou University repository

A Method to Forecast Storm-Caused Distribution Grid Damages Using Cost-Sensitive Regression Algorithm
  • Jufri, Fauzan Hanif ;
  • Oh, Seongmun ;
  • Jung, Jaesung ;
  • Choi, Min Hee
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorJufri, Fauzan Hanif-
dc.contributor.authorOh, Seongmun-
dc.contributor.authorJung, Jaesung-
dc.contributor.authorChoi, Min Hee-
dc.date.issued2019-05-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36456-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074902288&origin=inward-
dc.description.abstractThe forecasting of the grid damages caused by an extreme weather event, such as storm, has become an important to improve grid resilience. It can be used to prepare the mitigation actions or to plan a rapid restoration during the storm event. In this manner, this paper presents a methodology to forecast the damages caused by the storm events on the distribution grid. First, it integrates three different types of historical data such as the storm data, local weather, and distribution system damages. Then, this integrated data is used to develop the forecasting model by employing the Pearson Correlation Coefficient (PCC) and regression analysis. The accuracy of the model is improved by applying a cost-sensitive learning algorithm on the regression analysis. The proposed methodology is verified by using the actual data of the storm event occurs in South Korea.-
dc.description.sponsorshipACKNOWLEDGMENT This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172410100040).-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshCost-sensitive-
dc.subject.meshCost-sensitive learning-
dc.subject.meshDistribution grid-
dc.subject.meshExtreme weather events-
dc.subject.meshgrid resilience-
dc.subject.meshPearson correlation coefficients-
dc.subject.meshRegression algorithms-
dc.subject.meshStorm events-
dc.titleA Method to Forecast Storm-Caused Distribution Grid Damages Using Cost-Sensitive Regression Algorithm-
dc.typeConference-
dc.citation.conferenceDate2019.5.21. ~ 2019.5.24.-
dc.citation.conferenceName2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019-
dc.citation.edition2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019-
dc.citation.endPage3990-
dc.citation.startPage3986-
dc.citation.title2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019-
dc.identifier.bibliographicCitation2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019, pp.3986-3990-
dc.identifier.doi10.1109/isgt-asia.2019.8880929-
dc.identifier.scopusid2-s2.0-85074902288-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8864995-
dc.subject.keywordCost-sensitive regression-
dc.subject.keyworddamage forecasting-
dc.subject.keyworddistribution grid damages-
dc.subject.keywordgrid resilience-
dc.subject.keywordstorm event-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaArtificial Intelligence-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaEnergy Engineering and Power Technology-
dc.subject.subareaRenewable Energy, Sustainability and the Environment-
dc.subject.subareaElectrical and Electronic Engineering-
dc.subject.subareaControl and Optimization-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Jaesung  Image
Jung, Jaesung 정재성
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.