Ajou University repository

Data Mining for Speed Bump Detection from Car Wheels and GPS Sensors using Random Forest
  • Joon, Jo Hae ;
  • Renata, Dionysius Aldion ;
  • Yoon, Su Hyun ;
  • Youngjune, Choi ;
  • Jembre, Yalew Zelalem
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorJoon, Jo Hae-
dc.contributor.authorRenata, Dionysius Aldion-
dc.contributor.authorYoon, Su Hyun-
dc.contributor.authorYoungjune, Choi (researcherId=7406117220; isni=0000000405323933; orcid=https://orcid.org/0000-0003-2014-6587)-
dc.contributor.authorJembre, Yalew Zelalem-
dc.date.issued2019-10-01-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36445-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078223367&origin=inward-
dc.description.abstractWireless Sensor Network is several sensor nodes that form a network capable of communicating with each other wirelessly. Data mining is useful for finding a pattern from a large amount of data, for driving condition monitoring can be obtained through Controller Area Network (CAN)-bus data. Vehicle sensors for this research provide signal data, including wheel speed and GPS data. Random Forest is used for this project because of it easy to use and understand. Random Forest Classification is one of the popular methods of data mining. Sensors, applications, and users who want access the vehicle information are integrated to communicate with each other using Mobius IoT platform. The accuracy of Random Forest Classifier obtained through this research is 80.9%.-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshController area networkbus-
dc.subject.meshLarge amounts-
dc.subject.meshRandom forest classification-
dc.subject.meshRandom forest classifier-
dc.subject.meshRandom forests-
dc.subject.meshSignal data-
dc.subject.meshVehicle sensors-
dc.subject.meshWheel speed-
dc.titleData Mining for Speed Bump Detection from Car Wheels and GPS Sensors using Random Forest-
dc.typeConference-
dc.citation.conferenceDate2019.10.16. ~ 2019.10.18.-
dc.citation.conferenceName10th International Conference on Information and Communication Technology Convergence, ICTC 2019-
dc.citation.editionICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future-
dc.citation.endPage743-
dc.citation.startPage740-
dc.citation.titleICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future-
dc.identifier.bibliographicCitationICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future, pp.740-743-
dc.identifier.doi10.1109/ictc46691.2019.8939736-
dc.identifier.scopusid2-s2.0-85078223367-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8932631-
dc.subject.keyworddata mining-
dc.subject.keywordrandom forest-
dc.subject.keywordvehicles-
dc.subject.keywordwireless sensor network-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaArtificial Intelligence-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaComputer Science Applications-
dc.subject.subareaInformation Systems and Management-
dc.subject.subareaManagement of Technology and Innovation-
dc.subject.subareaSafety, Risk, Reliability and Quality-
dc.subject.subareaMedia Technology-
dc.subject.subareaControl and Optimization-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Choi, Youngjune Image
Choi, Youngjune최영준
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.