Ajou University repository

Development of 24-hour optimal scheduling algorithm for energy storage system using load forecasting and renewable energy forecasting
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorLee, Wonjun-
dc.contributor.authorJung, Jaesung-
dc.contributor.authorLee, Munsu-
dc.date.issued2018-01-29-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36308-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046362832&origin=inward-
dc.description.abstractThis paper presents the 24-hour optimal scheduling algorithm for Energy Storage System (ESS) using load forecasting and renewable energy forecasting in South Korea electricity tariff structure. For load forecasting and renewable energy forecasting, 24-hour multivariate forecasting model combining very-short-term and short-term forecasting models is developed. Then, load and renewable forecasts are input to the optimal ESS scheduling algorithm. The objective of this algorithm is to maximize the customer's profit by energy arbitrage, minimize the peak load to reduce the contract power, and minimize the charging/discharging cycles to lengthen the expected life of ESS. The effectiveness of this algorithm is validated in case study.-
dc.description.sponsorshipThis work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20162010103780).-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.meshCharging/discharging-
dc.subject.meshElectricity tariff-
dc.subject.meshEnergy storage systems-
dc.subject.meshLoad forecasting-
dc.subject.meshMultivariate forecasting-
dc.subject.meshOptimal scheduling algorithm-
dc.subject.meshRenewable energies-
dc.subject.meshShort-term forecasting-
dc.titleDevelopment of 24-hour optimal scheduling algorithm for energy storage system using load forecasting and renewable energy forecasting-
dc.typeConference-
dc.citation.conferenceDate2017.7.16. ~ 2017.7.20.-
dc.citation.conferenceName2017 IEEE Power and Energy Society General Meeting, PESGM 2017-
dc.citation.edition2017 IEEE Power and Energy Society General Meeting, PESGM 2017-
dc.citation.endPage5-
dc.citation.startPage1-
dc.citation.titleIEEE Power and Energy Society General Meeting-
dc.citation.volume2018-January-
dc.identifier.bibliographicCitationIEEE Power and Energy Society General Meeting, Vol.2018-January, pp.1-5-
dc.identifier.doi10.1109/pesgm.2017.8273907-
dc.identifier.scopusid2-s2.0-85046362832-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/conferences.jsp-
dc.subject.keywordEnergy Storage System (ESS)-
dc.subject.keywordESS Scheduling-
dc.subject.keywordKorea Electricity Tariff Structure-
dc.subject.keywordLoad Forecasting-
dc.subject.keywordRenewable Forecasting-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaEnergy Engineering and Power Technology-
dc.subject.subareaNuclear Energy and Engineering-
dc.subject.subareaRenewable Energy, Sustainability and the Environment-
dc.subject.subareaElectrical and Electronic Engineering-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Jaesung  Image
Jung, Jaesung 정재성
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.