Ajou University repository

Data compression and prediction using machine learning for industrial IoT
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorPark, Junmin-
dc.contributor.authorPark, Hyunjae-
dc.contributor.authorChoi, Young June (researcherId=7406117220; isni=0000000405323933; orcid=https://orcid.org/0000-0003-2014-6587)-
dc.date.issued2018-04-19-
dc.identifier.issn1976-7684-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36283-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047000578&origin=inward-
dc.description.abstractIndustrial IoT generates big data that is useful for getting insight from data analysis but storing all the data is a burden. To resolve it, we propose to compress the industrial data using neural network regression into a representative vector with lossy compression. For efficiency of the compression, we use the divide-and-conquer method such that the industrial data can be handled by the chunk size of data. Through our experiments, we verify that industrial data is represented by a function and predicted with high accuracy.-
dc.description.sponsorshipThis research was supported by the MSIP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW) supervised by the IITP (Institute for Information & communications Technology Promotion) (2015- 0-00908).-
dc.description.sponsorshipACKNOWLEDGMENT This research was supported by the MSIP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW) supervised by the IITP (Institute for Information & communications Technology Promotion) (2015-0-0090)8 .-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.subject.meshDivide and conquer methods-
dc.subject.meshHigh-accuracy-
dc.subject.meshIndustrial datum-
dc.subject.meshLossy compressions-
dc.subject.meshRegression-
dc.titleData compression and prediction using machine learning for industrial IoT-
dc.typeConference-
dc.citation.conferenceDate2018.1.10. ~ 2018.1.12.-
dc.citation.conferenceName32nd International Conference on Information Networking, ICOIN 2018-
dc.citation.edition32nd International Conference on Information Networking, ICOIN 2018-
dc.citation.endPage820-
dc.citation.startPage818-
dc.citation.titleInternational Conference on Information Networking-
dc.citation.volume2018-January-
dc.identifier.bibliographicCitationInternational Conference on Information Networking, Vol.2018-January, pp.818-820-
dc.identifier.doi10.1109/icoin.2018.8343232-
dc.identifier.scopusid2-s2.0-85047000578-
dc.identifier.urlhttp://www.icoin.org/-
dc.subject.keywordBig data-
dc.subject.keywordData compression-
dc.subject.keywordIndustrial data-
dc.subject.keywordMachine learning-
dc.subject.keywordRegression-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaInformation Systems-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Choi, Youngjune Image
Choi, Youngjune최영준
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.