Ajou University repository

Generating abnormal industrial control network traffic for intrusion detection system testing
  • Song, Joo Yeop ;
  • Lee, Woomyo ;
  • Yun, Jeong Han ;
  • Park, Hyunjae ;
  • Kim, Sin Kyu ;
  • Choi, Young June
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorSong, Joo Yeop-
dc.contributor.authorLee, Woomyo-
dc.contributor.authorYun, Jeong Han-
dc.contributor.authorPark, Hyunjae-
dc.contributor.authorKim, Sin Kyu-
dc.contributor.authorChoi, Young June (researcherId=7406117220; isni=0000000405323933; orcid=https://orcid.org/0000-0003-2014-6587)-
dc.date.issued2018-01-01-
dc.identifier.issn1868-4238-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/36241-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059021842&origin=inward-
dc.description.abstractIndustrial control systems are widely used across the critical infrastructure sectors. Anomaly-based intrusion detection is an attractive approach for identifying potential attacks that leverage industrial control systems to target critical infrastructure assets. In order to analyze the performance of an anomaly-based intrusion detection system, extensive testing should be performed by considering variations of specific cyber threat scenarios, including victims, attack timing, traffic volume and transmitted contents. However, due to security concerns and the potential impact on operations, it is very difficult, if not impossible, to collect abnormal network traffic from real-world industrial control systems. This chapter addresses the problem by proposing a method for automatically generating a variety of anomalous test traffic based on cyber threat scenarios related to industrial control systems.-
dc.language.isoeng-
dc.publisherSpringer New York LLC-
dc.subject.meshAnomaly based intrusion detection systems-
dc.subject.meshAnomaly detection-
dc.subject.meshAnomaly-based intrusion detection-
dc.subject.meshExtensive testing-
dc.subject.meshIndustrial control systems-
dc.subject.meshIndustrial controls-
dc.subject.meshIntrusion Detection Systems-
dc.subject.meshTraffic generation-
dc.titleGenerating abnormal industrial control network traffic for intrusion detection system testing-
dc.typeConference-
dc.citation.conferenceDate2018.3.12. ~ 2018.3.14.-
dc.citation.conferenceName12th IFIP WG 11.10 International Conference on Critical Infrastructure Protection, ICCIP 2018-
dc.citation.edition12th IFIP WG 11.10 International Conference, ICCIP 2018, Revised Selected Papers-
dc.citation.endPage281-
dc.citation.startPage265-
dc.citation.titleIFIP Advances in Information and Communication Technology-
dc.citation.volume542-
dc.identifier.bibliographicCitationIFIP Advances in Information and Communication Technology, Vol.542, pp.265-281-
dc.identifier.doi10.1007/978-3-030-04537-1_14-
dc.identifier.scopusid2-s2.0-85059021842-
dc.identifier.urlhttp://www.springer.com/series/6102-
dc.subject.keywordAnomaly detection-
dc.subject.keywordIndustrial control systems-
dc.subject.keywordTraffic generation-
dc.type.otherConference Paper-
dc.description.isoafalse-
dc.subject.subareaInformation Systems and Management-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Choi, Youngjune Image
Choi, Youngjune최영준
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.